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Abstract: Membrane-interaction [MI]-QSAR analysis, which includes descriptors explicitly
derived from simulations of solutes [drugs] interacting with phospholipid membrane models,
was used to construct QSAR models for human oral intestinal drug absorption. A data set of
188 compounds, which are mainly drugs, was divided into a parent training set of 164 compounds
and a test set of 24 compounds. Stable, but not highly fit [R? = 0.68] MI-QSAR models could
be built for all 188 compounds. However, the relatively large number [47] of drugs having 100%
absorption, as well as all zwitterionic compounds [11], had to be eliminated from the training
set in order to construct a linear five-term oral absorption diffusion model for 106 compounds
which was both stable [R2 = 0.82, @? = 0.79] and predictive given the test set compounds
were predicted with nearly the same average accuracy as the compounds of the training set.
Intermolecular membrane—solute descriptors are essential to building good oral absorption
models, and these intermolecular descriptors are displaced in model optimizations and
intramolecular solute descriptors found in published oral absorption QSAR models. A general
form for all of the oral intestinal absorption MI-QSAR models has three classes of descriptors
indicative of three thermodynamic processes: (1) solubility and partitioning, (2) membrane—
solute interactions, and (3) flexibility of the solute and/or membrane. The intestinal oral absorption
MI-QSAR models were compared to MI-QSAR models previously developed for Caco-2 cell
permeation and for blood—brain barrier penetration. The MI-QSAR models for all three of these
ADME endpoints share several common descriptors, and suggest a common mechanism of
transport across all three barriers. A further analysis of these three types of MI-QSAR models
has been done to identify descriptor-term differences across these three models, and the
corresponding differences in thermodynamic transport behavior of the three barriers.
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Introduction systemic administration. Oral drug delivergpecifically

The oral route for drug delivery has always been strongly tablets, capsules, and soft getccount for 70% of all dosage
preferred over alternative and more invasive routes for
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forms consumed This preference is due to the convenience, procedure like the Caco-2 monolayer cell mddere
relatively low costs, and high patient compliance rates commonly used.
associated with oral drug delivery systems. In an attemptto  This paper deals with the application of the membrane-
further enhance patient convenience and compliance byinteraction [MI]-QSAR methodology to predict human
employing flexible dosing conditions, there is now an intestinal absorption of a set of drugs for which diffusion is
increased research focus on controlled-release formulationsthe rate-limiting step of absorption.
Consequently, oral dosage forms continue to rise in popular-
ity both among drug developers and among patients, Methods
especially those with chronic conditions. Hence, a crucial ~ A. Oral Absorption Data. Zhao et aP collected and
issue in the development of any new drug is its bioavailablity evaluated human intestinal absorption data from various
after oral administration. literature sources, and this data was divided into diffusion
The mechanism, prediction, and measurement of humanand dissolution rate limited sets of compounds. The set of
intestinal absorption have been the subject of a number of 188 compounds that have diffusion as the rate-limiting step
books and review articlés® Oral absorption refers to the  of absorption has been used in this MI-QSAR study. This
process of movement of a drug from its site of administration Set consists of drugs or druglike molecules spanning a wide
into systemic circulation, while bioavailability is the rate or molecular weight range of 75 to 873 amu and also includes
extent of absorption. Many factors affect the highly complex 20 zwitterionic drugs. The oral absorption values of these
process of drug absorption, but the three main steps involvedcompounds range from 0.3% to 100%. Table 1 lists the initial
are dissolution, diffusion, and perfusid# solid drug, once training set of 188 compounds with their percentage absorp-
administered, needs to first dissolve; the drug in solution tion, molecular weights, [CJlogF, and polar surface area,
then diffuses across the intestinal membrane, and on exit itPSAi™* values.
is removed by perfusion into the blood stream. Thus, drug B- The MI-QSAR Paradigm. 1. Modeling of the Solute
solubility plays a very important role in absorption. In the Molecules and of the Phospholipid Monolayer.The MI-
case of a poorly soluble drug, dissolution could be the rate- @SAR paradigm has been discussed in detail previously and
limiting step in the absorption proces©n the other hand, 1S Only summarized heré. 7 Currently, this methodology
for soluble drugs that rapidly diffuse across membrane
bilayers of the gastrointestinal tract, perfusion could be the (7) Dolusio, J. T.; Billups, N. F.; Dittert, L. W.; Sugita, E. T.;
rate-limiting step. Hence, it also stands to reason that for ~ SWwintosky, J. V. Drug absorption I: A siturat gut technique
drugs that have diffusion as the rate-limiting step of yielding realistic absorption rate3. Pharm. Sci1969 58, 1196

. . . . : 1200.
absorption, dissolution and blood flow will have little effect (8) Artursson, P.; Palm, K.: Luthman, K. Caco-2 monolayers in

on their oral bioavailability. A model designed to estimate experimental and theoretical predictions of drug transphalt.
intestinal drug absorption accounting for all factors involved Drug Delivery Rev. 1996 22, 67—84.

would be extremely complekHowever, based upon the  (9) Zhao, Y. H.; Le, J.; Abraham, M. H.; Hersey, A.; Eddershaw, P.
knowledge of the rate-limiting step concerned with the J.; Luscombe, C. N.; Butina, D.; Beck, G.; Sherborne, B.; Cooper,

. . . . . I.; Platts, J. A. Evaluation of human intestinal absorption data for
intestinal absorption of a particular drug, various methods use in QSAR studies and a quantative relationship obtained with

can be employed to simplify the procedure. For drugs that the Abraham descriptord. Pharm. Sci2001, 90, 749-784.
are dissolution rate limited, various dissolution tests are @ised, (10) Moriguchi, I.; Hirono, S.; Liu, Q.: Nakagome, |.; Matsushita, Y.
while for drugs that are diffusion rate limited, animal models Simple method of calculating octanol/water partition coefficient.

like a rat intestinal absorption modebr a nonanimal Chem. Pharm. Bull. (Tokyd)992 40, 127-130.
(11) Clark, D. E. Rapid calculation of polar molecular surface area

and its application to the prediction of transport phenomena. 2.

(1) Dubin, C. H. Taking ControlPharmaceutical Formulation and Prediction of blood-brain barrier penetratidnPharm. Sci1999,
Quality, October 2003, 126144. 88, 815-821.

(2) Wilson, C. J.: Gastrointestinal transit and drug absorptio@rhd (12) Kulkarni, A. S.; Hopfinger, A. J. Membrane-interaction QSAR
Drug Absorption: Prediction and AssessmeBDtessman, J. B.; analysis: application to the estimation of eye irritation by organic
Lennerna, H., Eds.; Marcel Dekker, Inc.: New York, 2000; pp compoundsPharm. Res1999 16, 1244-1252.

1-10. (13) Kulkarni, A. S.; Hopfinger, A. J.; Osborne, R.; Bruner, L. H.;

(3) Abraham, M. H.; Zhao, Y. H.; Le, J.; Hersey, A.; Luscombe, C. Thompson, E. D. Prediction of Eye Irritation from Orgranic
N.; Reynolds, D. P.; Beck, G.; Sherborne, B.; Cooper, |. On the Chemicals Using Membrane-Interaction QSAR Analy$isxicol.
mechanism of human intestinal absorpti&ur. J. Med. Chem. Sci. 2001,59, 335-345.

2002 37, 595-605. (14) ADMET/MI-QSAR Version 1.0 User’s Guidehe Chem21 Group,

(4) Binns, T. B.Absorption and Distribution of drugsE. & S. Inc.: Chicago, 2001.

Livingstone LTD: Edinburgh and London, 1964. (15) Kulkarni, A.; Han, Y.; Hopfinger, A. J. Predicting Caco-2 cell

(5) Dressman, J. B.; Amidon, G. L.; Reppas, C.; Shah, V. P. permeation coefficients of organic molecules using membrane-
Dissolution testing as a prognostic tool for oral drug absorption: interaction QSAR analysid. Chem. Inf. Comput. S@002 42,
immediate dosage formharm. Res1998 15, 11-22. 331-342.

(6) Dressman, J. B.; Amidon, G. L.; Fleisher, D. Absorption (16) lyer, M.; Mishra, R.; Han, Y.; Hopfinger, A. J. Predicting blood-
potential: estimating the fraction absorbed for orally-administered brain barrier partitioning of organic molecules using membrane-
compoundsJ. Pharm. Scil985 74, 588-589. interaction QSAR analysig?harm. Res2002 19, 1611-1621.
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Table 1. Percentage of Absorption, Molecular Weight, Octanol—Water Partition Coefficient, and Polar Surface Area of the
Complete Data Set Which Is Training Set A for Constructing Eqs 6 and 7

% MW % MW
no. drug name Abs (amu) ClogP PSA no. drug name Abs  (amu) ClogP PSA
1 aminopyrine 100 231.30 1.0 250 70 sotalol 95 272.36 0.2 85.0
2 bornaprine 100 253.38 4.3 270 71 timolol 95 316.42 1.6 76.0
3 caffeine 100 194.20 -0.1 470 72 alprenolol 93 249.34 2.7 43.0
4 camazepam 100 371.81 3.6 520 73 amrinone 93 187.20 —-0.6 75.0
5 cicaprost 100 374.46 2.0 99.0 74 isradipine 92 371.39 3.6 95.0
6 cisapride 100 465.94 3.4 83.0 75 ketoprofen 92 254.27 2.8 59.0
7 corticosterone 100 346.45 2.3 73.0 76 hydrocortisone 91 362.45 1.7 96.0
8 cyproterone acetate 100 416.92 3.4 490 77 naloxone 91 327.37 0.0 69.0
9 desipramine 100 266.38 4.1 20.0 78 alprazolam 90 308.76 2.3 39.0
10 diazepam 100 284.73 3.3 280 79 amphetamine 90 135.20 1.6 27.0
11 diclofenac 100 296.14 3.0 40.0 80 betaxolol 90 307.42 2.2 55.0
12 ethinyl estradiol 100 296.39 3.7 46.0 81 chloramphenicol 90 323.13 0.7 118.0
13 fenclofenac 100 297.12 5.0 48.0 82 felbamate 90 238.24 -0.3 110.0
14 fluvastatin 100 411.46 3.2 76.0 83 ketorolac 90 255.26 1.6 62.0
15 gallopamil 100 484.62 3.1 68.0 84 meloxicam 90 351.39 3.1 101.0
16 glyburide 100  493.99 4.1 110.0 85 nisoldipine 90 388.41 4.2 82.0
17 granisetron 100 31241 1.8 48.0 86 nizatidine 90 331.46 0.5 83.0
18 imipramine 100 280.40 4.4 8.0 87 phenytoin 90 252.27 2.1 59.0
19 indomethacin 100 357.78 4.2 68.0 88 sulindac 90 356.40 2.8 58.0
20 isoxicam 100 335.33 2.4 116.0 89 terazosin 90 387.44 2.7 102.0
21 levonorgestrel 100 312.43 3.3 40.0 90 tramadol 90 263.37 2.3 22.0
22 lormetazepam 100 335.18 2.6 53.0 91 dihydrocodeine 89 301.37 1.3 49.0
23 lornoxicam 100 371.81 3.2 100.0 92 oxazepam 89 286.71 2.3 67.0
24 mexiletine 100 179.26 2.6 340 93 sultopride 89 354.46 1.9 68.0
25 nefazodone 100 470.01 5.0 51.0 94 tenidap 89 320.74 0.6 77.0
26 nicotine 100 162.23 1.3 150 95 felodipine 88 384.24 5.0 60.0
27 ondansetron 100 293.36 2.6 31.0 96 moxonidine 88 241.69 1.0 69.0
28 oxatomide 100 426.55 5.4 440 97 nitrendipine 88 360.36 3.4 105.0
29 phenglutarimide 100 288.38 15 49.0 98 saccharin 88 183.18 0.5 71.0
30 piroxicam 100 331.34 2.7 99.0 99 bupropion 87 239.73 3.2 24.0
31 praziquantel 100 312.40 3.4 36.0 100 Ilamivudine 87 229.26 -15 93.0
32 progesterone 100 328.48 3.8 30.0 101 pindolol 87 248.32 1.7 63.0
33 salicylic acid 100 138.12 2.2 55.0 102 topiramate 86 339.36 -0.1 121.0
34 stavudine 100 224.22 -05 86.0 103 lansoprazole 85 349.31 3.1 65.0
35 sudoxicam 100 337.37 2.6 101.0 104 morphine 85 285.33 0.2 61.0
36 tenoxicam 100 337.37 2.4 100.0 105 oxyfedrine 85 313.38 2.8 57.0
37 testosterone 100 288.41 3.2 40.0 106 tolbutamide 85 270.34 25 78.0
38 theophylline 100 180.17 —0.1 64.0 107 aspirin 84 180.15 1.0 60.0
39 toremifene 100 405.94 6.4 15.0 108 bromazepam 84 316.15 1.7 53.0
40 valproic acid 100 144.21 2.8 40.0 109 captopril 84 217.28 1.2 58.0
41 verapamil 100 454.59 3.7 64.0 110 propiverine 84 367.47 4.1 28.0
42 carfecillin 99  454.49 3.1 111.0 111  methylprednisolone 82 374.46 2.0 95.0
43 naproxen 99  230.25 2.8 51.0 112 mifobate 82 358.64 0.7 70.0
44 nordiazepam 99  270.71 3.0 43.0 113  sorivudine 82 349.13 -1.7 127.0
45 prednisolone 99  360.43 1.6 97.0 114  digoxin 81 780.92 1.3 216.0
46 propranolol 99 259.34 2.8 43.0 115 flecainide 81 414.35 4.4 55.0
47 atropine 98 289.36 1.3 50.0 116  piroximone 81 217.23 1.0 82.0
48 lamotrigine 98 256.10 3.2 97.0 117  quinidine 81 324.41 2.9 40.0
49 minoxidilne 98  210.27 1.1 94.0 118 acebutolol 80 336.42 1.6 88.0
50 tolmesoxide 98 214.27 0.9 37.0 119 acetaminophen 80 151.16 0.5 56.0
51 viloxazine 98  237.29 1.3 45.0 120 dexamethasone 80 392.45 2.0 90.0
52 warfarin 98 308.32 2.4 51.0 121 ethambutol 80 204.31 0.1 69.0
53 antipyrine 97  188.23 0.4 24.0 122 guanabenz 80 231.08 3.0 76.0
54 clofibrate 97  242.69 3.7 31.0 123 isoniazid 80 137.15 -0.7 72.0
55 disulfiram 97  296.52 3.9 50 124 methadone 80 309.44 3.1 16.0
56 trimethoprim 97  290.32 1.0 107.0 125 omeprazole 80 345.41 25 72.0
57 venlafaxine 97  277.40 2.1 26.0 126  urapidil 78 387.48 2.6 65.0
58 bumetanide 96 364.41 3.9 121.0 127  famciclovir 7 321.34 -0.4 113.0
59 torasemide 96  348.42 3.3 95.0 128 mercaptoethanesulfonic acid 77 142.19 -0.5 59.0
60 trapidil 96  205.27 1.9 43.0 129  propylthiouracil 76 170.23 2.8 44.0
61 codeine 95 299.36 0.8 48.0 130 cycloserine 73 102.10 -1.7 80.0
62 fluconazole 95  306.29 -0.1 61.0 131 recainam 71 263.38 11 58.0
63 flumazenil 95  289.27 1.1 52.0 132  hydrochlorothiazide 69 297.73 —-0.4 135.0
64 ibuprofen 95  206.27 3.7 40.0 133 cimetidine 64 252.35 0.4 84.0
65 labetolol 95  328.40 2.5 95.0 134 metolazone 64 365.83 2.4 96.0
66 metoprolol 95 267.36 1.2 56.0 135 terbutaline 62 225.28 0.5 80.0
67 oxprenolol 95 265.34 1.7 53.0 136 furosemide 61 330.74 1.9 126.0
68 practolol 95  266.34 0.8 77.0 137 fenoterol 60 303.35 0.8 105.0
69 scopol 95 303.35 0.3 61.0 138 pirbuterol 60 240.30 -0.9 90.0
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Table 1 (Continued)

% MW % MW
no. drug name Abs (amu) ClogP PSA no. drug name Abs (amu) ClogP PSA
139 reproterol 60 389.41 -1.0 127.0 154 fosmidomycin 30 183.10 -3.1 108.0
140 zipasidone 60 412.93 4.4 57.0 155 lincomycin 28 406.53 -0.1 125.0
141 nadolol 57 309.40 0.2 91.0 156 netivudine 28 282.25 —-2.0 131.0
142 Sumatriptan 57 295.40 0.6 75.0 157 adefovir 16 274.20 —-2.1 142.0
143 metformin 53 129.18 —2.6 86.0 158 k-strophanthoside 16 872.93 —5.4 273.0
144 amiloride 50 229.64 -0.3 157.0 159 mannitol 16 182.17 —-4.7 129.0
145 atenolol 50 266.34 -0.1 93.0 160 cidofovir 3 279.19 —-3.6 156.0
146 guanoxan 50 207.23 0.3 87.0 161 ganciclovir 3 255.24 —-3.0 146.0
147 rimiterol 48 223.27 0.4 79.0 162 acarbose 2 645.60 —10.6 321.0
148 cymarin 47 548.65 -0.2 126.0 163 ouabain 1.4 584.64 —4.6 196.0
149 metaproterenol 44 211.26 0.1 81.0 164 kanamycin 1 484.51 -7.8 295.0
150 sulpiride 44 341.42 11 103.0 165 neomycin 1 614.66 -9.0 354.0
151 famotidine 38 337.45 —0.6 182.0 166 streptomycin 1 581.59 -7.2 346.0
152 ascorbic acid 35 176.12 —2.2 120.0 167 lactulose 0.6 342.30 —5.6 208.0
153 fosfomycin 31 138.06 -0.5 79.0 168 raffinose 0.3 504.44 —-8.0 288.0
Zwitterions?@
169 cefadroxil 100 363.39 —2.6 141.0 179 nicotinic acid 88 123.11 0.8 50.0
170 cephalexin 100 347.39 -1.9 117.0 180 trovaflaxicin 88 416.36 -1.2 97.0
171 glycine 100 75.07 -3.2 73.0 181 levodopa 86 197.19 —-2.8 114.0
172 loracarbef 100 349.77 -0.5 117.0 182 cefatrizine 75 462.50 -3.0 184.0
173 ofloxacin 100 361.37 -0.2 73.0 183 ampicillin 62 349.40 -1.3 116.0
174 pefloxacin 100 333.36 0.1 63.0 184 vigabatrin 58 129.16 —-2.9 69.0
175 amoxicillin 93 365.40 -1.9 140.0 185 eflornithine 55 182.18 —3.0 94.0
176 telmisartan 90 512.63 7.3 63.0 186 tranexamic acid 55 157.21 -1.8 70.0
177 tiagabine 90 375.53 2.8 45.0 187 methyldopa 41 211.21 —-2.1 109.0
178 acrivastine 88 348.43 11 53.0 188 ceftriaxone 1 554.58 —-2.1 212.0

2 The definition of zwitterionic compounds is based on the presence of both an ionizable acid group (carboxylic acid or a hydrogen-bearing
tetrazole) and an ionizable base group (primary, secondary, tertiary amine or a pyridine). These compounds may or may not be zwitterions
according to their pKj, values.

uses a model membrane monolayer composed of dimyris-unfavorable van der Waals interactions between a solute
toylphosphatidylcholine (DMPC) molecules. DMPC is mod- molecule and the membrane DMPC molecules, one of the
eled from available crystal structure datahe structure of  “center” DMPC molecules was removed from the equili-
a DMPC molecule is shown in Figure 1. An assembly of 25 brated monolayer and a test solute molecule inserted in the
DMPC molecules (5x 5 x 1) in (X)y,2 directions, space created by the missing DMPC molecule. Each of the
respectively, is the model membrane monolayer (Figure 2). test solute molecules of the permeation data set was inserted
Additional information regarding the construction of the at three different positions (depths) in the DMPC monolayer
monolayer model can be found in refs-1P7. with the most polar group of the solute molecule “facing”
The DMPC molecule, the training set, and the test toward the head group region of the monolayer. Three
compounds [Table 1] were built using the HyperChem corresponding MDS models were generated for each solute
program’® and the AM1 Hamiltonian in Mopac &0was molecule with regard to the trial positions of the solute
used for the estimation of partial atomic charge distributions molecule in the monolayer. The three trial positions were
over the molecules. ) )
2. Molecular Dynamic Simulations, MDS. The condi- 1+ Solute molecule in the head group region
tions set for the MDS were established in previous MI-QSAR 2. solute molecule in between the head group region and
analyse¥ 17 and are only summarized here. An initial MDS the aliphatic chains
on the model membrane, without a solute molecule present,3. solute molecule in the tail region of the aliphatic chains
was carried out to allow structural relaxation and distribution
of the kinetic energy over the monolayer. In order to prevent  The lowest energy geometry of the solute molecule in the
monolayer was sought using each of the three trial solute
(17) Santos-Filho, O. A.: Hopfinger, A. J.; Zheng, T. Characterization POSitions. The three initial MDS positions of ethanol are
of skin penetration processes of organic molecules using molecular Shown in Figure 3a to illustrate this modeling procedure.
similarity and QSAR analysisMol. Pharm.2004 1, 466—476. The energetically most favorable geometry of this solute
(18) Hauser, H.; Pascher, I.; Pearson, R. H.; Sundell, S. Preferredmolecule in the model DMPC monolayer from all three MDS
conformation gnd molgcu]ar p.ackin.g of phosphatidylethanolamine js shown in Figure 3b.
and phosphatidylcholin@iochim. Biophys. Acta981, 650, 21~ MDS were carried out using the Molsim package with an

51. ) . .
(19) Hyperchem Release 4.5 for MS Windpwspercube Inc: Wa- extended MM2 force field! The simulation temperature was

terloo, Ontario, 1998.
(20) Mopac 6.0 Frank J. Seiler Research laboratory, United States (21) Doherty, D. CMolsim Version 3.0 User's Guiddhe Chem21
Air Force Academy: 1990. Group, Inc.: 1780 Wilson Drive, Lake Forest, IL, 2000.
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Figure 1. The chemical structure of a DMPC phospholipid molecule with an arbitrary atom numbering assignment. c1 and c2

denote the two aliphatic chains of a DMPC molecule.

Figure 2. Top view of the monolayer assembly.

set at 311 K, and was held constant in the MDS by coupling
the system to an external fixed temperature Bathhe
trajectory step size was 0.001 ps over a total simulation time

every 100 steps to yield a sampling set of 2,000 states. Two-
dimensional periodic boundary conditions corresponding to
x andy sides of model membrane, but not the “surface plane”
of the monolayer, were employed € 50 A2b =50 A ?2

c = 80 A2 andy = 90°) for the DMPC molecules of the
monolayer model, but not the test solute molecule. The angle
y is the angle an extended conformation DMPC molecule
makes with the “planar surface” of the monolayer.

Only a single solute molecule was explicitly considered
in each MDS. Each of the solute molecules, at the start of
an MDS, was placed at each of the three different positions
in the monolayer, as described above, with the most polar
portion of the solute “facing” toward the head group region.

3. Calculation of Descriptors and the Construction of
MI-QSAR Models. The descriptors used in the MI-QSAR
analysis can be divided into (ggneral intramolecular solute
descriptors, (b¥olute-membrane intermoleculatescriptors,
and (c)solute aqueous dissolution and sation descriptors.

(22) Berendsen, H. J. C.; Postman, J. P. M.; Gunsteren, W. F. v.; Nola,
A. D.; Haak, J. R. Molecular dynamics with coupling to an

of 20 ps for each test compound. The system was sampled  external bathJ. Chem. Phys1984 81, 3684-3690.
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Figure 3.
at three different positions in the DMPC model monolayer prior
to the start of each of the three corresponding MDS used in
the MI-QSAR modeling. (b) The lowest energy geometry of a
DMPC—ethanol complex in the MDS.

(a) A “side” view of an ethanol molecule inserted

Thegeneral intramolecular solute descriptarecluded as
part of the trial descriptor pool are listed and defined in Table
2. It is to be noted that the ClogP (Table 1) was calculated
using Daylight softwaré? and the PSA values (Table 1) of

both the training and test set molecules were taken from the

study reported by Zhao et #.

Theintermolecular solute membrane interaction descrip-
tors are extracted directly from the MDS trajectories and
are listed in part A of Table 3. These particular intermolecular

descriptors are calculated using the most stable (lowest total

potential energy) solutemembrane geometry realized from
MDS sampling of the three initial positions (see Figure 3a)
for each of the solutes.

It should be noted thaf(H.O), F(oct), and LogP, the
agueous and 1-octanol solvation free energies of the solute

(23) . ClogP Daylight Chemical Information Softwaregrsion 4.51
Daylight Chemical Information Inc.: Los Altos, CA, 1998.

(24) Zhao, Y. H.; Abraham, M. H.; Le, J.; Hersey, A.; Luscombe, C.
N.; Beck, G.; Sherborne, B.; Cooper, |. Rate-Limited steps of
human oral absorption and QSAR studiebarm. Res2002 19,
1446-1457.

Table 2. The General Intramolecular Solute Descriptors
Used in the Trial MI-QSAR Descriptor Pool

S

HOMO highest occupied molecular orbital energy
LUMO lowest unoccupied molecular orbital energy
Dp dipole moment

Vm molecular volume

SA molecular surface area

Ds density

Mw molecular weight

MR molecular refractivity

N(hba) number of hydrogen bond acceptors
N(hbd) number of hydrogen bond donors

N(B) number of rotatable bonds

JSSA (X) Jurs—Stanton surface area descriptors
Chi-N, Kappa-M Kier and Hall topological descriptors

Rg radius of gyration

PM principal moment of inertia

PSA polar surface area

Se conformational entropy

Q) partial atomic charge densities

and the corresponding 1-octanol/water partition coefficient,
respectively, are computed using intramolecular computa-
tional methods. This is also true f&(coh), Ty, andTg, the
cohesive energy and the hypothetical crystal-melt and glass
transition temperatures of the solutes, respectively, which
are used to estimate solute dissolution properties. However,
all six of these descriptors are intermolecular properties, the
first three relating to solute solvation, and the last three to
solute dissolution. Therefore, these descriptors are classified
assolvation and dissolution intermolecular descriptoesd
listed in part B of Table 3.

4. Construction and Testing of Intestinal Absorption
MI-QSAR Models. All MI-QSAR models reported in this
study are built using multidimensional linear regression
fitting, and the models are optimized by employing the
genetic function approximation (GFA). GFA is a multidi-
mensional optimization method based on the genetic algo-
rithm paradign?® Both linear and quadratic representations
of each of the descriptor values are included in the trial
descriptor pool, and MI-QSAR models are built as a function
of number of descriptor terms in a model. Statistical
significance in the optimization of an MI-QSAR model is
judged using both the correlation coefficient of %, and
the leave-one-out (LOO) cross-validation correlation coef-
ficient, Q2. In addition, random scrambling of the dependent
variable [20 randomly generated data sets from each training
set ] is carried out, and an attempt is made to construct
corresponding statistically significant MI-QSAR models. No
statistically significant randomly scrambled MI-QSAR mod-
els were found for any of the data sets investigated in this
study. Covariance among the significant descriptors in the
optimized MI-QSAR models is evaluated by constructing

(25) Rogers, D.; Hopfinger, A. J. Applications of genetic function
approximation to quantitative structure-activity relationships and
guantitative structure-property relationshipsChem. Inf. Comput.
Sci. 1994 34, 854-866.
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Table 3. The Intermolecular Interaction Descriptors in the Trial Descriptor Pool

A. Solute—Membrane Intermolecular Descriptors

<F(total)> average total free energy of interaction of the solute and membrane

< E(total)> average total interaction energy of the solute and membrane

Enrer(total) interaction energy between the solute and the membrane at the total intermolecular system minimum potential energy
Exv(2)e Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, torsion, and combinations thereof

energies at the total intermolecular system minimum potential energy.

X, Y can be the solute, S, and/or membrane, M, and if E = free, then X =Y = S and the energies are for the solute
not in the membrane, but isolated by itself.

AExy(Z) Change in the Z= 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, torsion, and combinations
thereof energies due to the uptake of the solute to the total intermolecular system minimum potential energy.

X, Y can be the solute, S, and/or membrane, M.

Er(2) Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, torsion, and combinations thereof
energies of the total [solute and membrane model] intermolecular minimum potential energy.

AE1(Z) change in the Z = 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, and combinations thereof
of the total [solute and membrane model] intermolecular minimum potential energy

AS change in entropy of the membrane due to the uptake of the solute

S absolute entropy of the solute—membrane system

Ap change in density of the model membrane due to the permeating solute

<d> average depth of the solute molecule from the membrane surface

B. Solute Aqueous Dissolution and Solvation Descriptors

F(H20) aqueous solvation free energy

F(oct) 1-octanol solvation free energy

logP 1-octanol/water partition coefficient

E(coh) cohesive packing energy of the solute molecules

Tm hypothetical crystal-melt transition temperature of the solute
T hypothetical glass transition temperature of the solute

the linear cross-correlation matrix of the descriptors, and by following equations: since
comparing relative descriptor usage in the crossover opti-

mization process of the GFA analysis. dCy/dt = —kyCy (1)
C. The Diffusion Rate Constant.For an aqueous soluble 0 N

drug, its permeability characteristics play a major role in its In(C,” — C)IC™ = —kyit (2a)

absorption across the gastrointestinal membrane. Passive

diffusion can be generally described by Fick's I&¢® C,/C°=FA (2b)

according to which the rate of diffusion is a function of the

concentration gradient, the surface area and distance (thick- In(1 — FA) = —kyt 3)

ness of the membrane) involved, and characteristic physi-
cochemical properties of the biological barrier and the % Abs= 100 x (1 — e i) =

diffusing substance. There is usually a sufficient quantity of 100 x (1 — e 10 logkai +logty (4
a soluble drug dissolved in the small intestinal fluid so that
the drug concentration on the receiving site (portal vein) is log[In(1/1 — FA)] = log kg + logt (5)

often negligible in comparison. Consequently, the rate-
determining step for absorption is the passive diffusion In egs 15, dC/dt is the diffusion rate through the gas-
through the membrane and the percentage of absorption igrointestinal membrané is the diffusion rate constang
directly related to the diffusion raféIf the rate of diffusion is the drug concentration in the intestinal fluid,° is the
follows first-order kineticg®2° then the percentage of initial concentration in the intestinal fluidCy is the
absorption (% Abs), or fraction absorbed (FA), and the concentration in the portal vein at tinte and logt is a

diffusion rate constantkg) are related as given in the constant when itis assumed that the transit time is the same

(26) Washington, N.; Washington, C.; Wilson, C. Bhysiological of such an assumption are discussed in more detail below.
Pharmaceutics, Barriers to drug Absorptia?nd ed.; Taylor and In this MI-QSAR study, both % Abs and Idgis are used
Francis, London, 2001. as dependent variables to construct human oral absorption

(27) Martin, Y. C.; Kutter, E.; Austel, V..Modern Drug Research MI-QSAR models.

Paths to Better and Safer DrugBekker: New York, 1989.
(28) Smith, D. A.; van de Waterbeemd, H.; Walker, D. Rharma-

cokinetics and Metabolism in Drug Desigwiley-VCH: Wein- Results .
heim, New York, 2001, The two best MI-QSAR models, eqs 6 and 7, for the initial

across the gastrointestinal tract for all drugs. The implications

(29) Rowland, M.; Tozer, T. NClinical Pharmacokinetics: Concepts ~ data set comprising all 188 drug molecules (Table 1) are

and ApplicationsLea & Febiger: Philadelphia, 1989. presented in Table 4 along with theR? (correlation
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Table 4. Percentage Oral Absorption, % Abs, MI-QSAR Models for the Initial Training Set (A)
eq terms N model R? Q?

6 7 188 9% Abs = 78.32 + 0.13 AErr (hb) + 3.39 ClogP — 0.03 AEr(total) + 0.31F(H,0) + 0.05Ess(1—4)ree +  0.68  0.65
0.04T¢ — 39.24 Dp

7 6 188 9% Abs = —10.05 + 0.05Er7(1—4) — 0.13 PSA + 0.04 T + 0.12 AErr(hb) + 3.62 ClogP — 0.06E(vdw) 0.67 0.64

Table 5. Cross-Correlation Matrix of Percentage of Absorption of the MI-QSAR Descriptors of Eqs 6 and 72

Clog P PSA F(Hzo) Te Dp Ess(1_4)free ETT(l —4) ETT(VdW) AETT(h b) AETT(totaI)
ClogP 1.000
PSA 0.577 1.000
F(H20) 0.542 0.863 1.000
Te 0.016 0.002 0.022 1.000
Dp 0.012 0.040 0.003 0.099 1.000
Ess(1—4)free 0.001 0.001 0.018 0.013 0.003 1.000
Err(1-4) 0.000 0.000 0.012 0.007 0.007 0.887 1.000
Err(vdw) 0.003 0.001 0.000 0.010 0.005 0.000 0.000 1.000
AErr(hb) 0.500 0.639 0.585 0.000 0.002 0.013 0.017 0.000 1.000
AErr(total) 0.005 0.000 0.000 0.000 0.000 0.000 0.001 0.380 0.001 1.000

a Highly correlated descriptors are shown in bold.

coefficient of determination) an@? (cross-validated coef- van der Waals interaction energy of the membras@ute
ficient of determination) values. One of the advantages of complex. All four of these descriptors reflect the molecular
performing GFA model optimization is the generation of flexibility of the solute and/or solutemembrane complex,
multiple significant models, as opposed to a single model and have roles similar to those &Err(hb) andTg, as
generated by other model optimization methods. Both MI- described above, in the expression of % Abs. Given the
QSAR models, eqgs 6 and 7, have a number of descriptors inrelatively large number of descriptors found in eqs 6 and 7
common, and very similaR? and Q? values. It was found that reflect molecular flexibility, it would seem that % Abs
as part of the GFA optimization process that models with is very sensitive to the molecular flexibility of both the solute
more than seven terms tend to be overfit as indicated by aand solute-membrane complex. Table 5 shows the linear
drop in theirQ? values compared to corresponding six- and cross-correlation matrix of the descriptors found in the two
seven-term models. models, and it is clear that the descriptors identified as

Other than the partition coefficient, ClogP, the descriptors reflecting molecular flexibility are overall, and somewhat
that are common to both models ax&rr(hb), which is the surprisingly, not cross-correlated to one another. This lack
change in the total hydrogen-bonding energy upon uptakeof cross-correlation can be attributed to these descriptors
of the solute (drug) molecule into the DMPC membrane capturing molecular flexibility with respect to different
system, andlg, which is the hypothetical glass transition structural features of the solute, membrane, and their joint
temperature of the solute molecule, and models the dissolu-interactions. For examplé&sg1—4)re.e measures the short-
tion of a liquid or gel-like solute. Both of these descriptors range molecular flexibility of the solute due to interacting
are highly indicative of the flexibility [conformational groups separated by one torsion angle in the solute. In
entropy] of a molecule, and/or a molecular complex like the contrastAErr(hb) reflects the change in molecular flexibility
membrane-solute system. As overall hydrogen bonding is of the entire solutemembrane complex resulting from the
lost upon uptake of a solute into a membrane, molecular overall change in hydrogen bonding in the complex due to
flexibility of the complex increases. As the structural groups uptake of the solute into the membrane.

composing a polymer becomes more rigid,Titsgenerally Dp is the intramolecular dipole moment of the solute in
increases and the molecular flexibility of the polymer its lowest energy state, akdH,O) and PSA are the aqueous
decreases. The positive regression coefficients for A&- free energy of solvation and the polar surface area of the

(hb) andTg in egs 6 and 7 indicate that % Abs increases as solute, respectively. Each of these three descriptors reflects
molecular flexibility decreases. Decreasing molecular flex- that as the polarity of the solute increases, that is Dp and
ibility corresponds to decreasing favorable sotuteembrane PSA increase, an@(H20) becomes more negative, the
binding interactions. This is realized by not allowing the corresponding absorption of the solute [drug], % Abs,
solute and those portions of the membrane in contact with decreases.
the solute to fit together. From an inspection of the cross-correlation matrix in Table
Other significant descriptors of eqs 6 and 7 are the 5, it is seen that PSA arg(H,O) have, as expected, a high
following: AErr(total), the change in total potential energy linear correlation since both are measures of poldfifiyl,O)
of the solute-membrane system upon uptake of the solute has been shown to be an important descriptor in MI-QSAR
molecule,Esd1—4)tee and Err(1—4), the -4 nonbonded models for Caco-2 permeability.It is likely that the PSA
intramolecular energy of the free solute and the total descriptor captures some solvation characteristics of the
DMPC—solute complex, respectively, abgh(vdw), the total molecule and acts as a partial “replacement”F¢il,0) in
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Figure 4. The predicted versus observed percent oral absorption, % Abs, plot for the 188 drugs (training set A) using the
MI-QSAR model given by eq 6.
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Figure 5. Distribution of % Abs measures across the range of the training set A.

eq 7. The cross-correlation matrix also reveals a high skewed absorption measures across the range of this data
correlation between the-34 nonbonded interaction energy set, eq 6 can be judged to be a reasonably significant model
within the solute and the same energy term calculated for even with anR?> = 0.68. Moreover, the absence of any

the entire membranesolute complexfsg1—4)ree andErr- statistical significant models upon random scrambling of the
(1—4)], and these descriptors could be playing similar roles data set also suggests that the model is stable and robust as
in either model. well.

The 7-term model, eq 6, has a constant term of 78.32 that But, to further investigate the applicability of MI-QSAR
is very close to the mean percentage absorption (79.77) ofdescriptors to predict intestinal absorption data, models are
the entire training set. This observation is suggestive that eqalso constructed using the kinetic constakii)( as the
6 is a superior statistical model to eq 7, the 6-term model. dependent variable. |dg; is calculated using eq 5, but this
The predicted versus observed percentage oral absorptionequation is not defined if FA is 0 or 1, that is, when the
% Abs, plot for eq 6 is shown in Figure 4. absorption percent is either 0% or 100%. Therefore, to derive
Most molecules in Table 1 [training set A] are drugs that a logkqs model for training set A, drugs having percentage
are orally administered. This feature of the data set partially absorption values of 100% are modified to 99.5% absorption.
compromises the statistical quality of the data. From a total There are no compounds in the data set with 0% absorption
of 188 compounds, 47 compounds have 100% absorptionso no corrections on this opposite side of the % Abs range
and 52 compounds are in the range of39% absorption. are necessary. The ldg: MI-QSAR model for training set
The molecule with the lowest absorption value is raffinose A, with the altered data, is given in Table 6 as eq 8. This
(0.3%). However, the mean and median absorption valuesmodel shows slight improvement in quality from the percent-
are 80% and 90%, respectively, and the data has a standardge absorption model for the same training set havingan
deviation of 27%. The distribution of the data in training of 0.73 (from 0.68 in eq 6) and @ of 0.67 (from 0.65 in
set A is shown in Figure 5. Given the large size and highly eq 6).
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Table 6. log kyir MI-QSAR Models for Training Sets A, B, and C?

eq N model R? Q@

8 188  log kgr= 1.68 + 0.08 ClogP — 0.0002 HOMO + 0.006 Ess(hb)free + 0.0003T¢ — 0.002Eys(vdw-+chg) — 073  0.67
0.001E+rr(bend)

9 117 log kgit= —0.12 + 0.006 Ess(hb)sree + 0.09 ClogP — 0.02 AEss(bend) — 0.002Eys(vdw+chg) 0.78 0.74

10 106  log kgt = —0.44 + 0.10 ClogP — 0.002 AEr(bend) + 0.0005 T + 0.005Fss (hb)iee — 0.001Eys(vdw-+chg) ~ 0.82  0.79

2 Drugs with 100% and 0% absorption are eliminated in training set B, and zwitterionic drugs are also eliminated in forming training set C.
The test set compounds are also eliminated for training sets B and C.

Table 7. Cross-Correlation Matrices of the Descriptors of the MI-QSAR log kyir Model for Training Sets A, B,and C
A. For Training Set A

ClogP Ess(hb)free Ewms(vdw-+chg) HOMO Err(bend) Te
ClogP 1.000
Ess(hb)free 0.493 1.000
Ens(vdw+chg) 0.295 0.362 1.000
HOMO 0.009 0.002 0.010 1.000
Err(bend) 0.006 0.013 0.002 0.000 1.000
T 0.005 0.014 0.000 0.008 0.005 1.000

B. For Training Set B

Ens(vdw+chg) Ess(hb)iree AEss(bend) ClogP
Evs(vdw+chg) 1.000
ESS(hb)free 0.353 1.000
AEss(bend) 0.000 0.004 1.000
ClogP 0.246 0.589 0.011 1.000

C. For Training Set C

ClogP AErr(bend) Ess(hb)iree Ews(vdw-+chg) To
ClogP 1.000
AErr(bend) 0.004 1.000
Ess(hb)see 0.610 0.006 1.000
Ews(vdw-+chg) 0.247 0.000 0.354 1.000
Ts 0.147 0.009 0.058 0.020 1.000

Next, in order to probe the effect of the skewed absorption solute, AEsgbend) andAErr(bend), respectively], the total
data on the construction of the MI-QSAR models, the 47 bending energy of the membransolute complex Err-
drugs with 100% absorption are eliminated from the original (bend)], the sum of intermolecular van der Waals and
data set, that is, training set A. A new data set, divided into electrostatic energies between the phospholipid and the
a modified training set (B) consisting of 117 compounds and “bound” solute moleculeHBws(vdw-+chg)], the highest oc-

a test set consisting of 24 compounds, is constructed. Thecupied molecular orbital energy [HOMO)], and the hypotheti-
test set is selected to span the entire range of the trainingcal glass transition temperature of the solukg] [

set, and with the same skewed distribution with respect to AEsgbend),AErr(bend), and Err(bend)] are descriptors
oral absorption measures as the training set. In addition, theagain reflective of molecular flexibility and play the same
distribution of relative molecular similarity across the test role in eqs 810 asAErr(total) and similar descriptors do
set is made to be approximately the same as that of thein eqs 6 and 7Eus(vdw+chg) is a direct estimate of the
training set. Moreover, in order to determine the effect of sum of the electrostatic and hydrogen bonding taking place
the zwitterionic compounds on the QSAR models, the between the membrane and the solute. Kggis predicted
zwitterions are eliminated from the modified training set B to modestly increase with increasing membraselute

to create another training set (C) with 106 drugs. The test electrostatic and hydrogen bonding [more negative values
set mentioned above has three zwitterionic drugs that areof Eus(vdw-+chg)]. This relationship would suggest that
also eliminated to form a distinct test set for training set C. solute partitioning into the membrane from solution, and
The logkyir MI-QSAR models for training sets B and C are  subsequent diffusion, is facilitated by electrostatic and
listed in Table 6 along with their respecti® andQ? values. hydrogen bonding between the membrane and the solute.

The significant descriptors appearing in the resultant MI-  Table 7 (parts A, B, and C) shows the cross-correlation
QSAR models (egs810, Table 6) are ClogP, the free space matrix of the descriptors of eqs—80. No significant
intramolecular solute hydrogen-bonding energygdhb)ed, correlation is present among the descriptors, indicating that
the change in intramolecular bending energies of the soluteeach descriptor provides unique information to account for
and the total membranesolute complex upon uptake of the the behavior of the training set data.
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Figure 6. log kg values for training set B (N = 117) observed
and as predicted by the MI-QSAR model (eq 9).

Table 8. Observed and Predicted log kg Values, and
Corresponding Residuals of Fit, for the Compounds of the
Test Sets

|Og kdif
predicted residual
%

molecule Abs obsd eq9 eq 10 eq9 eql0
1 naproxen 99 0.301 0.111 0.403 —0.190 0.102
2 minoxidilne 98 0.230 —0.326 —0.056 —0.556 —0.287
3 disulfiram 97 0.183 0.201 0.112 0.018 —0.071
4 codeine 95 0.114 —0.035 —0.197 —0.149 —-0.311
5 oxprenolol 95 0.114 —0.075 —0.097 —0.189 —0.212
6 amrinone 93 0.063 —0.350 —0.233 —0.412 —0.296
7 amphetamine 90 0.000 —0.031 0.008 —0.031 0.008
8 nisoldipine 90 0.000 0.317 0.329 0.317 0.329
9 dihydrocodeine 89 —0.018 —0.117 —0.171 —0.098 —0.152
10 nitrendipine 88 —0.036 0.076 0.141 0.111 0.177
11 lansoprazole 85 —0.084 0.107 0.130 0.191 0.214
12 captopril 84 —0.099 —0.107 —0.142 —0.008 —0.043
13 flecainide 81 —0.142 —0.075 0.100 0.067 0.242
14 ethambutol 80 —0.156 —0.336 —0.410 —0.181 —0.254
15 famciclovir 77 —0.195 —0.326 —0.303 —0.131 —0.108
16 cimetidine 64 —0.353 —0.279 —0.032 0.074 0.321
17 reproterol 60 —0.400 —0.450 —0.389 —0.050 0.011
18 atenolol 50 —0.521 —0.427 —0.400 0.095 0.121
19 famotidine 38 —0.683 —1.231 —0.668 —0.549 0.014
20 adefovir 16 —1.121 —0.242 —0.392 0.878 0.729
21 ouabain 14 —2.213 —1.332 —1.230 0.881 0.983
22 amoxicillin 93 0.063 —0.683 zwitterion —0.746
23 levodopa 86 —0.069 —0.685 zwitterion —0.616
24 methyldopa 41 —0.640 —0.662 zwitterion —0.022

The MI-QSAR model for training set B (eq 9) exhibits a
better statistical significance than do the models for the
original training set A (egs 6 and 7). ldg: values for

lyer et al.
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Figure 7. log kgir values for the test set (N = 24) observed

and as predicted by the MI-QSAR model (eq9).
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Figure 8. log kg values for training set C (N = 106) observed
and as predicted by the MI-QSAR model (eq 10).

predicted and observed ldg; values for the test set is 0.5
(plotted in Figure 7 and tabulated in Table 8). As a diagnostic
check to evaluate model predicitivty, eliminating the two
largest outliers, compounds 20 and 21 of Table 8, from the
test set improves the predictiv® value to only 0.6. This
suggests that the limitations in the accurate predictivity of
eq 9 are distributed reasonably evenly across the test set.
Eliminating the zwitterions from training set B signifi-
cantly improves the statistical quality of the resultant log
kair MI-QSAR model. When the zwitterions are eliminated
to form training set C, the cross-validated correlation
coefficient (0.79) of the corresponding MI-QSAR model (eq
10) is higher than that of eq 9 (0.74). Thus, it appears that
a substantial source for the lack of fit of eq 8 is the inclusion
of the zwitterions in training set B. However, more significant
is the finding of the solid performance of the I&g; MI-
QSAR model, given by eq 10, in predicting the llg of
the test set molecules. This model predicts the test set,
composed of 21 compounds, with good accur&y= 0.70),

training set B, as predicted by the model expressed as eq 9which is not too much less than the fit of the MI-QSAR

are plotted in Figure 6. Additional validation of the model

model to the compounds of training set C. Removing two

(eq 9) is performed using the test set described above, andutliers from the test set further improves the predidid

given in Table 8, which spans the entire llag range of
training set B. Equation 9 performs marginally in predicting
the logkgi values of the test set. The correlati@®f)(between
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to 0.74. The predicted versus observed kggplots of the
training and test sets for eq 10 are shown in Figures 8 and
9, respectively.
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models leads to the conclusion that “classic” intramolecular
. QSAR descriptors are not adequate to describe intestinal
absorption. It is emphasized that the identical intramolecular
, QSAR descriptors found to be significant in other reported
05 absorption and distribution ADME QSAR models were
included in the set of trial descriptors of this study. However,
several of these intramolecular descriptors were not as
important relative to intermolecular MI-QSAR descriptors
in building the best models. For example, polar surface area,
PSA, is found in many “intramolecular” ADME QSAR
models reported in the literature, but only appears once, that
being in eq 7, in this work.
Observed log Kar (4) Equations 6-10 can be generalized to a form involving

Figure 9. log kg values for the test set (N = 21) observed three types of thermodynamic processes:
d dicted by MI-QSAR del 10).
and as predicted by MI-Q model (eq10) [% Abs] or [logky] = (a constant valuey

Discussion (solubility and partitioning)

In evaluating the QSAR analyses carried out in the work + (membrane-solute binding)
reported here it is important to keep in mind at the outset
that gastrointestinal drug absorption is a highly complex
process. Thus, it is expected to be quite difficult, if not
impossible, to account for all the involved factors in a single Table 9 reports how the descriptors of eqs1® are
QSAR model. However, some important aims and corre- distributed with respect to these three types of thermody-
sponding inferences regarding the nature of drug absorptionnamic processes. An inspection and comparison of egs 6
could be reliably considered as part of this study. 10 suggests that % Abs is dependent upon both agueous

One aim of this study is to ascertain if the MI-QSAR membrane partitioning and aqueous solubility of the drug
methodology would be applicable to a large, structurally [eqs 6 and 7], while the associated diffusion process of
diverse, data set. Most ADME training sets involve many absorption, as represented by lkg, is largely governed
more molecules of higher structural diversity than is found by aqueousmembrane partitioning as ClogP is only found
in a typical QSAR training set like enzyme inhibition by a in eqs 8-10. In making these assessments it is remembered
set of analog inhibitors. The ADME data set used in this that ClogP is not an explicit measure of aqueous and/or
study is additionally challenging since most of the molecules membrane solubilities, but rather an approximate measure
are drugs that have good oral absorption. Hence, the percenpf their ratio.
absorbed measures are skewed toward highly absorbed Diffusion is seemingly only influenced by direct mem-
molecules, and nonuniformly influence the data-fitting brane-solute “binding”, while overall drug absorption, %
process of QSAR model building. Overall, the resultant Abs, involves not only direct membransolute interactions
models, as given by egs-6 10, indicate the following: but also interactions influencing structural reorganization of

(1) Only marginal models can be built for the entire data the membrane. Finally, there are no apparent differences in
set [egs 6 and 7] with respect to accuracy, but these modelshe types, or sources, of conformational flexibility of the drug
are stable and significant as judged by RtendQ? of each  and/or membrane with respect to % Abs and kag The
model being nearly identical to one another. Thus, the same types of descriptors reflecting molecular flexibility are
descriptors of these models may meaningfully reflect the found in eqs 6 and 7 as in eqs-80 as can be seen in Table
mechanism of drug absorption. 0.

(2) Accurate QSAR models could only be built after some  Most papers reporting QSAR models for transport ADME
data pruning. Elimination of the many (47) compounds properties do not explicitly discuss these models in terms of
reported to have 100% absorption, as well as zwitterionic thermodynamic processes. However, discussions around
compounds, led to an accurate and predictive model assome of these literature models suggest that constraints on
expressed by eq 10. One can argue that the many compoundgolecular lipophilicity and polar surface area are necessary
with 100% absorption in the training set unduly bias the for effective barrier transport.
fitting of the data and lead to distorted models, while the A second aim of this study is to determine, as far as
zwitterionic compounds may act by a modified/different possible from the MI-QSAR models, how similar the Caco-2
mechanism of transport making the development of a single cell permeation proce¥sis to human intestinal oral drug
QSAR model for a single mechanism of transport difficult, absorption. Caco-2 cell permeation has long been used as a
or even meaningless to pursue.

(3) Intermolecular MI-QSAR descriptors are found to play (30y pinto, M.; Robine-Leon, S.; Appay, M.; Kedinger, M.: Triadou,
a vital role in describing human intestinal oral absorption. N.; et al. Caco-2 cell monolayer a surrogate marker for in vivo
A composite examination of the final set of best MI-QSAR intestinal permeability in humanBiol. Cell 1983 47, 323-328.

P
o

Predicted log kg

+ (conformational flexibility of the
solute and/or membrane) (11)
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Table 9. The Distribution of the MI-QSAR Descriptors of Eqs 6—10, 12, and 13 with Respect to Aqueous Solubility,
Membrane—Solute Interaction/Binding, and Solute Conformational Flexibility in the Membrane

solubility and membrane—solute solute and membrane
eq partitioning interactions conformational flexibility
6 ClogP; F(H20) AErr(hb); AEr(total); Dp Ess(1—4)ree; To
7 ClogP; PSA AErr(hb); AErr(vdw) Err(1-4)ee; To
8 ClogP HOMO; Eus(vdw+chg) Err(bend); Te; Ess(hb)free
9 ClogP Ewms(vdw-+chg) AEss(bend); Ess(hb)sree
10 ClogP Ems(vdw-+chg) AErr(bend); Ess(hb)see; To
12 Caco-2 cell permeation, F(H20) AErr (hb) Err(1—4)tree; Ess(hb)sree
ref 15
13 BBB penetration, ClogP; PSA Ewms(chg+hb) Er1(1—4)free; Ess(tor)free
ref 16
laboratory model for oral drug absorpti&hWe previously A third aim of this study is to compare the descriptor terms
developed an MI-QSAR Caco-2 cell permeation mé&del of a blood-brain-barrier (BBB) penetration MI-QSAR model
which is given by to the intestinal absorption MI-QSAR models, egsl®, as
well as to the Caco-2 cell permeation model, eq 12.
Pcaco-2 = —14.62+ 0.71F(H,0) + 0.07AE(hb) — Previously, we developed an MI-QSAR model for BBB
0.26Eg{hb) + 0.06E,1(1—4) (12) penetratiotf that is given by
N=30 R =0.82 Q*=0.75 log BBB = 0.0156— 0.0231 PSAt+ 0.1591 ClogP-

. ) ) ) 0.007E,,s(chg+ hbd)+ 0.0346E,tor) +
The descriptor terms in eq 12 have been included in Table 0.0075\E—(1—4) (13)
9 to facilitate comparisons to both the % Abs and lqg : i
MI-QSAR models. The descriptor terms of eq 12 are, overall, N =56 R = 0.845 Qz =0.795
largely indistinguishable from those of eqs 0. However,
eq 6 has the largest number of common descriptors to thoseT he descriptors of eq 13 are also listed in Table 9 to readily
of eq 12. Hence, based solely on the descriptors of the MI- permit comparisons among the descriptors of the various M-
QSAR models, and indirectly on the mechanism of transport QSAR models. The descriptors of eq 13 match up reasonably
the descriptors likely reflect, it is reasonable to conclude that well to those of eqs 610, as well as those of eq 12 for
intestinal absorption and Caco-2 cell permeation involve Caco-2 cell permeation. Moreover, eq 13 includes a ClogP
similar transport processes. The absence of a ClogP term inferm which could be argued makes it more similar overall
eq 12, however, does suggest that wateembrane parti-  to egs 6-10 than to eq 12. But while available experimental
tioning may be less important in Caco-2 cell permeation than data indicates that BBB penetration exhibits a trend with oral
in human intestinal oral absorption. drug absorption, and also with Caco-2 cell permeation, it is
The regression coefficients of eqs-652 have not been less indicative of human intestinal oral absorption than is

normalized with respect to their weightings within a given Caco-2 cell permeation. Thus, solute differences between
MI-QSAR model. Still, the relative values of the regression BBB penetration and oral absorption are expected to be
coefficients of eq 12 can be qualitatively compared to those reflected in the specific descriptors not in common between
of egs 6 and 7. The two training sets are quite similar with the BBB and oral absorption models, and/or differences in
respect to both chemical structures of the molecules of thethe relative importance, as measured by the regression
training sets and the corresponding range/magnitude of thecoefficients, of the common descriptors in the MI-QSAR
dependent variables [% Abs aRdac-2]. Such a qualitative ~ models for these two transport processes.
comparison suggests that increasing aqueous solubility [an Again, like eq 12, the relative values of the regression
increasingly negativé(H,0) value] of a drug more signifi-  coefficients of eq 13 can be qualitatively compared to those
cantly decreases Caco-2 cell permeation [regression coef-0f egs 6-10 for identical descriptors since the training sets
ficient = 0.71] than intestinal absorption [regression coef- are quite similar. However, such comparisons are most
ficient= 0.31, eq 6]. Minimizing the disruption in the overall reasonable for eqs-8l0, where the common range in the
hydrogen bonding of both the membrane and drug upon thedependent variables is about the same as that for eq 13 [log
uptake of the drug into the membrane, as measured byBBB, log kqf]. Moreover, a comparison between eq 10 and
AErr(hb), maximizes both Caco-2 cell permeation and €q 13 is particularly appropriate because Rfevalues of
intestinal absorption. However, this factor is again more these two MI-QSAR models are also about the same.
significant in Caco-2 cell permeation than for intestinal ~ One immediate observation in comparing BBB penetration
permeation. and human intestinal oral absorption models is that the
regression coefficient of the ClogP term for the BBB M-
(31) Artursson, P. Cell cultures as models for drug absorption across @SAR model is about twice as large as the regression

the intestinal mucos&ontrol Rev. Ther. Drug Syst1991, 8, 305— coefficients in eqs 810. Thus, BBB penetration is predicted

330. to be more sensitive to increasing drug lipophilicity than
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intestinal oral absorption. Moreover, the BBB penetration in deriving these models is that the intestinal transit time is
and intestinal oral absorption models all contain an identical constant for all molecules of the data set. Thus, while a
drug—membrane binding descriptdgys(chg + hbd). The diffusion rate constant is estimated for the purpose of this
Ems(chg+ hbd) term for BBB penetration has a regression study, it may not be reliable and/or accurate to define the
coefficient at least three times larger in magnitude than thoseprocess of absorption based upon such a correspondingly
of egs 8-10. As a result, BBB penetration is predicted to simple kinetic rate equation.
be influenced more significantly by binding to the membrane
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