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Abstract: Membrane-interaction [MI]-QSAR analysis, which includes descriptors explicitly
derived from simulations of solutes [drugs] interacting with phospholipid membrane models,
was used to construct QSAR models for human oral intestinal drug absorption. A data set of
188 compounds, which are mainly drugs, was divided into a parent training set of 164 compounds
and a test set of 24 compounds. Stable, but not highly fit [R2 ) 0.68] MI-QSAR models could
be built for all 188 compounds. However, the relatively large number [47] of drugs having 100%
absorption, as well as all zwitterionic compounds [11], had to be eliminated from the training
set in order to construct a linear five-term oral absorption diffusion model for 106 compounds
which was both stable [R2 ) 0.82, Q2 ) 0.79] and predictive given the test set compounds
were predicted with nearly the same average accuracy as the compounds of the training set.
Intermolecular membrane-solute descriptors are essential to building good oral absorption
models, and these intermolecular descriptors are displaced in model optimizations and
intramolecular solute descriptors found in published oral absorption QSAR models. A general
form for all of the oral intestinal absorption MI-QSAR models has three classes of descriptors
indicative of three thermodynamic processes: (1) solubility and partitioning, (2) membrane-
solute interactions, and (3) flexibility of the solute and/or membrane. The intestinal oral absorption
MI-QSAR models were compared to MI-QSAR models previously developed for Caco-2 cell
permeation and for blood-brain barrier penetration. The MI-QSAR models for all three of these
ADME endpoints share several common descriptors, and suggest a common mechanism of
transport across all three barriers. A further analysis of these three types of MI-QSAR models
has been done to identify descriptor-term differences across these three models, and the
corresponding differences in thermodynamic transport behavior of the three barriers.
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Introduction
The oral route for drug delivery has always been strongly

preferred over alternative and more invasive routes for

systemic administration. Oral drug deliverysspecifically
tablets, capsules, and soft gelssaccount for 70% of all dosage
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forms consumed.1 This preference is due to the convenience,
relatively low costs, and high patient compliance rates
associated with oral drug delivery systems. In an attempt to
further enhance patient convenience and compliance by
employing flexible dosing conditions, there is now an
increased research focus on controlled-release formulations.
Consequently, oral dosage forms continue to rise in popular-
ity both among drug developers and among patients,
especially those with chronic conditions. Hence, a crucial
issue in the development of any new drug is its bioavailablity
after oral administration.

The mechanism, prediction, and measurement of human
intestinal absorption have been the subject of a number of
books and review articles.2-5 Oral absorption refers to the
process of movement of a drug from its site of administration
into systemic circulation, while bioavailability is the rate or
extent of absorption. Many factors affect the highly complex
process of drug absorption, but the three main steps involved
are dissolution, diffusion, and perfusion.3 A solid drug, once
administered, needs to first dissolve; the drug in solution
then diffuses across the intestinal membrane, and on exit it
is removed by perfusion into the blood stream. Thus, drug
solubility plays a very important role in absorption. In the
case of a poorly soluble drug, dissolution could be the rate-
limiting step in the absorption process.5 On the other hand,
for soluble drugs that rapidly diffuse across membrane
bilayers of the gastrointestinal tract, perfusion could be the
rate-limiting step. Hence, it also stands to reason that for
drugs that have diffusion as the rate-limiting step of
absorption, dissolution and blood flow will have little effect
on their oral bioavailability. A model designed to estimate
intestinal drug absorption accounting for all factors involved
would be extremely complex.6 However, based upon the
knowledge of the rate-limiting step concerned with the
intestinal absorption of a particular drug, various methods
can be employed to simplify the procedure. For drugs that
are dissolution rate limited, various dissolution tests are used,5

while for drugs that are diffusion rate limited, animal models
like a rat intestinal absorption model7 or a nonanimal

procedure like the Caco-2 monolayer cell model8 are
commonly used.

This paper deals with the application of the membrane-
interaction [MI]-QSAR methodology to predict human
intestinal absorption of a set of drugs for which diffusion is
the rate-limiting step of absorption.

Methods
A. Oral Absorption Data. Zhao et al.9 collected and

evaluated human intestinal absorption data from various
literature sources, and this data was divided into diffusion
and dissolution rate limited sets of compounds. The set of
188 compounds that have diffusion as the rate-limiting step
of absorption has been used in this MI-QSAR study. This
set consists of drugs or druglike molecules spanning a wide
molecular weight range of 75 to 873 amu and also includes
20 zwitterionic drugs. The oral absorption values of these
compounds range from 0.3% to 100%. Table 1 lists the initial
training set of 188 compounds with their percentage absorp-
tion, molecular weights, [C]logP,10 and polar surface area,
PSA,11 values.

B. The MI-QSAR Paradigm. 1. Modeling of the Solute
Molecules and of the Phospholipid Monolayer.The MI-
QSAR paradigm has been discussed in detail previously and
is only summarized here.12-17 Currently, this methodology

(1) Dubin, C. H. Taking Control.Pharmaceutical Formulation and
Quality, October 2003, 126-144.

(2) Wilson, C. J.: Gastrointestinal transit and drug absorption. InOral
Drug Absorption: Prediction and Assessment;Dressman, J. B.;
Lennerna¨s, H., Eds.; Marcel Dekker, Inc.: New York, 2000; pp
1-10.

(3) Abraham, M. H.; Zhao, Y. H.; Le, J.; Hersey, A.; Luscombe, C.
N.; Reynolds, D. P.; Beck, G.; Sherborne, B.; Cooper, I. On the
mechanism of human intestinal absorption.Eur. J. Med. Chem.
2002, 37, 595-605.

(4) Binns, T. B. Absorption and Distribution of drugs; E. & S.
Livingstone LTD: Edinburgh and London, 1964.

(5) Dressman, J. B.; Amidon, G. L.; Reppas, C.; Shah, V. P.
Dissolution testing as a prognostic tool for oral drug absorption:
immediate dosage forms.Pharm. Res.1998, 15, 11-22.

(6) Dressman, J. B.; Amidon, G. L.; Fleisher, D. Absorption
potential: estimating the fraction absorbed for orally-administered
compounds.J. Pharm. Sci.1985, 74, 588-589.

(7) Dolusio, J. T.; Billups, N. F.; Dittert, L. W.; Sugita, E. T.;
Swintosky, J. V. Drug absorption I: Anin situ rat gut technique
yielding realistic absorption rates.J. Pharm. Sci.1969, 58, 1196-
1200.

(8) Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in
experimental and theoretical predictions of drug transport.AdV.
Drug DeliVery ReV. 1996, 22, 67-84.

(9) Zhao, Y. H.; Le, J.; Abraham, M. H.; Hersey, A.; Eddershaw, P.
J.; Luscombe, C. N.; Butina, D.; Beck, G.; Sherborne, B.; Cooper,
I.; Platts, J. A. Evaluation of human intestinal absorption data for
use in QSAR studies and a quantative relationship obtained with
the Abraham descriptors.J. Pharm. Sci.2001, 90, 749-784.

(10) Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y.
Simple method of calculating octanol/water partition coefficient.
Chem. Pharm. Bull. (Tokyo)1992, 40, 127-130.

(11) Clark, D. E. Rapid calculation of polar molecular surface area
and its application to the prediction of transport phenomena. 2.
Prediction of blood-brain barrier penetration.J. Pharm. Sci.1999,
88, 815-821.

(12) Kulkarni, A. S.; Hopfinger, A. J. Membrane-interaction QSAR
analysis: application to the estimation of eye irritation by organic
compounds.Pharm. Res.1999, 16, 1244-1252.

(13) Kulkarni, A. S.; Hopfinger, A. J.; Osborne, R.; Bruner, L. H.;
Thompson, E. D. Prediction of Eye Irritation from Orgranic
Chemicals Using Membrane-Interaction QSAR Analysis.Toxicol.
Sci.2001,59, 335-345.

(14) ADMET/MI-QSAR Version 1.0 User’s Guide; The Chem21 Group,
Inc.: Chicago, 2001.

(15) Kulkarni, A.; Han, Y.; Hopfinger, A. J. Predicting Caco-2 cell
permeation coefficients of organic molecules using membrane-
interaction QSAR analysis.J. Chem. Inf. Comput. Sci.2002, 42,
331-342.

(16) Iyer, M.; Mishra, R.; Han, Y.; Hopfinger, A. J. Predicting blood-
brain barrier partitioning of organic molecules using membrane-
interaction QSAR analysis.Pharm. Res.2002, 19, 1611-1621.
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Table 1. Percentage of Absorption, Molecular Weight, Octanol-Water Partition Coefficient, and Polar Surface Area of the
Complete Data Set Which Is Training Set A for Constructing Eqs 6 and 7

no. drug name
%

Abs
MW

(amu) ClogP PSA no. drug name
%

Abs
MW

(amu) ClogP PSA

1 aminopyrine 100 231.30 1.0 25.0 70 sotalol 95 272.36 0.2 85.0
2 bornaprine 100 253.38 4.3 27.0 71 timolol 95 316.42 1.6 76.0
3 caffeine 100 194.20 -0.1 47.0 72 alprenolol 93 249.34 2.7 43.0
4 camazepam 100 371.81 3.6 52.0 73 amrinone 93 187.20 -0.6 75.0
5 cicaprost 100 374.46 2.0 99.0 74 isradipine 92 371.39 3.6 95.0
6 cisapride 100 465.94 3.4 83.0 75 ketoprofen 92 254.27 2.8 59.0
7 corticosterone 100 346.45 2.3 73.0 76 hydrocortisone 91 362.45 1.7 96.0
8 cyproterone acetate 100 416.92 3.4 49.0 77 naloxone 91 327.37 0.0 69.0
9 desipramine 100 266.38 4.1 20.0 78 alprazolam 90 308.76 2.3 39.0
10 diazepam 100 284.73 3.3 28.0 79 amphetamine 90 135.20 1.6 27.0
11 diclofenac 100 296.14 3.0 40.0 80 betaxolol 90 307.42 2.2 55.0
12 ethinyl estradiol 100 296.39 3.7 46.0 81 chloramphenicol 90 323.13 0.7 118.0
13 fenclofenac 100 297.12 5.0 48.0 82 felbamate 90 238.24 -0.3 110.0
14 fluvastatin 100 411.46 3.2 76.0 83 ketorolac 90 255.26 1.6 62.0
15 gallopamil 100 484.62 3.1 68.0 84 meloxicam 90 351.39 3.1 101.0
16 glyburide 100 493.99 4.1 110.0 85 nisoldipine 90 388.41 4.2 82.0
17 granisetron 100 312.41 1.8 48.0 86 nizatidine 90 331.46 0.5 83.0
18 imipramine 100 280.40 4.4 8.0 87 phenytoin 90 252.27 2.1 59.0
19 indomethacin 100 357.78 4.2 68.0 88 sulindac 90 356.40 2.8 58.0
20 isoxicam 100 335.33 2.4 116.0 89 terazosin 90 387.44 2.7 102.0
21 levonorgestrel 100 312.43 3.3 40.0 90 tramadol 90 263.37 2.3 22.0
22 lormetazepam 100 335.18 2.6 53.0 91 dihydrocodeine 89 301.37 1.3 49.0
23 lornoxicam 100 371.81 3.2 100.0 92 oxazepam 89 286.71 2.3 67.0
24 mexiletine 100 179.26 2.6 34.0 93 sultopride 89 354.46 1.9 68.0
25 nefazodone 100 470.01 5.0 51.0 94 tenidap 89 320.74 0.6 77.0
26 nicotine 100 162.23 1.3 15.0 95 felodipine 88 384.24 5.0 60.0
27 ondansetron 100 293.36 2.6 31.0 96 moxonidine 88 241.69 1.0 69.0
28 oxatomide 100 426.55 5.4 44.0 97 nitrendipine 88 360.36 3.4 105.0
29 phenglutarimide 100 288.38 1.5 49.0 98 saccharin 88 183.18 0.5 71.0
30 piroxicam 100 331.34 2.7 99.0 99 bupropion 87 239.73 3.2 24.0
31 praziquantel 100 312.40 3.4 36.0 100 lamivudine 87 229.26 -1.5 93.0
32 progesterone 100 328.48 3.8 30.0 101 pindolol 87 248.32 1.7 63.0
33 salicylic acid 100 138.12 2.2 55.0 102 topiramate 86 339.36 -0.1 121.0
34 stavudine 100 224.22 -0.5 86.0 103 lansoprazole 85 349.31 3.1 65.0
35 sudoxicam 100 337.37 2.6 101.0 104 morphine 85 285.33 0.2 61.0
36 tenoxicam 100 337.37 2.4 100.0 105 oxyfedrine 85 313.38 2.8 57.0
37 testosterone 100 288.41 3.2 40.0 106 tolbutamide 85 270.34 2.5 78.0
38 theophylline 100 180.17 -0.1 64.0 107 aspirin 84 180.15 1.0 60.0
39 toremifene 100 405.94 6.4 15.0 108 bromazepam 84 316.15 1.7 53.0
40 valproic acid 100 144.21 2.8 40.0 109 captopril 84 217.28 1.2 58.0
41 verapamil 100 454.59 3.7 64.0 110 propiverine 84 367.47 4.1 28.0
42 carfecillin 99 454.49 3.1 111.0 111 methylprednisolone 82 374.46 2.0 95.0
43 naproxen 99 230.25 2.8 51.0 112 mifobate 82 358.64 0.7 70.0
44 nordiazepam 99 270.71 3.0 43.0 113 sorivudine 82 349.13 -1.7 127.0
45 prednisolone 99 360.43 1.6 97.0 114 digoxin 81 780.92 1.3 216.0
46 propranolol 99 259.34 2.8 43.0 115 flecainide 81 414.35 4.4 55.0
47 atropine 98 289.36 1.3 50.0 116 piroximone 81 217.23 1.0 82.0
48 lamotrigine 98 256.10 3.2 97.0 117 quinidine 81 324.41 2.9 40.0
49 minoxidilne 98 210.27 1.1 94.0 118 acebutolol 80 336.42 1.6 88.0
50 tolmesoxide 98 214.27 0.9 37.0 119 acetaminophen 80 151.16 0.5 56.0
51 viloxazine 98 237.29 1.3 45.0 120 dexamethasone 80 392.45 2.0 90.0
52 warfarin 98 308.32 2.4 51.0 121 ethambutol 80 204.31 0.1 69.0
53 antipyrine 97 188.23 0.4 24.0 122 guanabenz 80 231.08 3.0 76.0
54 clofibrate 97 242.69 3.7 31.0 123 isoniazid 80 137.15 -0.7 72.0
55 disulfiram 97 296.52 3.9 5.0 124 methadone 80 309.44 3.1 16.0
56 trimethoprim 97 290.32 1.0 107.0 125 omeprazole 80 345.41 2.5 72.0
57 venlafaxine 97 277.40 2.1 26.0 126 urapidil 78 387.48 2.6 65.0
58 bumetanide 96 364.41 3.9 121.0 127 famciclovir 77 321.34 -0.4 113.0
59 torasemide 96 348.42 3.3 95.0 128 mercaptoethanesulfonic acid 77 142.19 -0.5 59.0
60 trapidil 96 205.27 1.9 43.0 129 propylthiouracil 76 170.23 2.8 44.0
61 codeine 95 299.36 0.8 48.0 130 cycloserine 73 102.10 -1.7 80.0
62 fluconazole 95 306.29 -0.1 61.0 131 recainam 71 263.38 1.1 58.0
63 flumazenil 95 289.27 1.1 52.0 132 hydrochlorothiazide 69 297.73 -0.4 135.0
64 ibuprofen 95 206.27 3.7 40.0 133 cimetidine 64 252.35 0.4 84.0
65 labetolol 95 328.40 2.5 95.0 134 metolazone 64 365.83 2.4 96.0
66 metoprolol 95 267.36 1.2 56.0 135 terbutaline 62 225.28 0.5 80.0
67 oxprenolol 95 265.34 1.7 53.0 136 furosemide 61 330.74 1.9 126.0
68 practolol 95 266.34 0.8 77.0 137 fenoterol 60 303.35 0.8 105.0
69 scopol 95 303.35 0.3 61.0 138 pirbuterol 60 240.30 -0.9 90.0

articles Iyer et al.

220 MOLECULAR PHARMACEUTICS VOL. 4, NO. 2



uses a model membrane monolayer composed of dimyris-
toylphosphatidylcholine (DMPC) molecules. DMPC is mod-
eled from available crystal structure data.18 The structure of
a DMPC molecule is shown in Figure 1. An assembly of 25
DMPC molecules (5× 5 × 1) in (x,y,z) directions,
respectively, is the model membrane monolayer (Figure 2).
Additional information regarding the construction of the
monolayer model can be found in refs 12-17.

The DMPC molecule, the training set, and the test
compounds [Table 1] were built using the HyperChem
program,19 and the AM1 Hamiltonian in Mopac 6.020 was
used for the estimation of partial atomic charge distributions
over the molecules.

2. Molecular Dynamic Simulations, MDS.The condi-
tions set for the MDS were established in previous MI-QSAR
analyses12-17 and are only summarized here. An initial MDS
on the model membrane, without a solute molecule present,
was carried out to allow structural relaxation and distribution
of the kinetic energy over the monolayer. In order to prevent

unfavorable van der Waals interactions between a solute
molecule and the membrane DMPC molecules, one of the
“center” DMPC molecules was removed from the equili-
brated monolayer and a test solute molecule inserted in the
space created by the missing DMPC molecule. Each of the
test solute molecules of the permeation data set was inserted
at three different positions (depths) in the DMPC monolayer
with the most polar group of the solute molecule “facing”
toward the head group region of the monolayer. Three
corresponding MDS models were generated for each solute
molecule with regard to the trial positions of the solute
molecule in the monolayer. The three trial positions were

The lowest energy geometry of the solute molecule in the
monolayer was sought using each of the three trial solute
positions. The three initial MDS positions of ethanol are
shown in Figure 3a to illustrate this modeling procedure.
The energetically most favorable geometry of this solute
molecule in the model DMPC monolayer from all three MDS
is shown in Figure 3b.

MDS were carried out using the Molsim package with an
extended MM2 force field.21 The simulation temperature was

(17) Santos-Filho, O. A.; Hopfinger, A. J.; Zheng, T. Characterization
of skin penetration processes of organic molecules using molecular
similarity and QSAR analysis.Mol. Pharm.2004, 1, 466-476.

(18) Hauser, H.; Pascher, I.; Pearson, R. H.; Sundell, S. Preferred
conformation and molecular packing of phosphatidylethanolamine
and phosphatidylcholine.Biochim. Biophys. Acta1981, 650, 21-
51.

(19) Hyperchem Release 4.5 for MS Windows; Hypercube Inc: Wa-
terloo, Ontario, 1998.

(20) Mopac 6.0; Frank J. Seiler Research laboratory, United States
Air Force Academy: 1990.

(21) Doherty, D. C.Molsim Version 3.0 User’s Guide; The Chem21
Group, Inc.: 1780 Wilson Drive, Lake Forest, IL, 2000.

Table 1 (Continued)

no. drug name
%

Abs
MW

(amu) ClogP PSA no. drug name
%

Abs
MW

(amu) ClogP PSA

139 reproterol 60 389.41 -1.0 127.0 154 fosmidomycin 30 183.10 -3.1 108.0
140 zipasidone 60 412.93 4.4 57.0 155 lincomycin 28 406.53 -0.1 125.0
141 nadolol 57 309.40 0.2 91.0 156 netivudine 28 282.25 -2.0 131.0
142 Sumatriptan 57 295.40 0.6 75.0 157 adefovir 16 274.20 -2.1 142.0
143 metformin 53 129.18 -2.6 86.0 158 k-strophanthoside 16 872.93 -5.4 273.0
144 amiloride 50 229.64 -0.3 157.0 159 mannitol 16 182.17 -4.7 129.0
145 atenolol 50 266.34 -0.1 93.0 160 cidofovir 3 279.19 -3.6 156.0
146 guanoxan 50 207.23 0.3 87.0 161 ganciclovir 3 255.24 -3.0 146.0
147 rimiterol 48 223.27 0.4 79.0 162 acarbose 2 645.60 -10.6 321.0
148 cymarin 47 548.65 -0.2 126.0 163 ouabain 1.4 584.64 -4.6 196.0
149 metaproterenol 44 211.26 0.1 81.0 164 kanamycin 1 484.51 -7.8 295.0
150 sulpiride 44 341.42 1.1 103.0 165 neomycin 1 614.66 -9.0 354.0
151 famotidine 38 337.45 -0.6 182.0 166 streptomycin 1 581.59 -7.2 346.0
152 ascorbic acid 35 176.12 -2.2 120.0 167 lactulose 0.6 342.30 -5.6 208.0
153 fosfomycin 31 138.06 -0.5 79.0 168 raffinose 0.3 504.44 -8.0 288.0

Zwitterionsa

169 cefadroxil 100 363.39 -2.6 141.0 179 nicotinic acid 88 123.11 0.8 50.0
170 cephalexin 100 347.39 -1.9 117.0 180 trovaflaxicin 88 416.36 -1.2 97.0
171 glycine 100 75.07 -3.2 73.0 181 levodopa 86 197.19 -2.8 114.0
172 loracarbef 100 349.77 -0.5 117.0 182 cefatrizine 75 462.50 -3.0 184.0
173 ofloxacin 100 361.37 -0.2 73.0 183 ampicillin 62 349.40 -1.3 116.0
174 pefloxacin 100 333.36 0.1 63.0 184 vigabatrin 58 129.16 -2.9 69.0
175 amoxicillin 93 365.40 -1.9 140.0 185 eflornithine 55 182.18 -3.0 94.0
176 telmisartan 90 512.63 7.3 63.0 186 tranexamic acid 55 157.21 -1.8 70.0
177 tiagabine 90 375.53 2.8 45.0 187 methyldopa 41 211.21 -2.1 109.0
178 acrivastine 88 348.43 1.1 53.0 188 ceftriaxone 1 554.58 -2.1 212.0

a The definition of zwitterionic compounds is based on the presence of both an ionizable acid group (carboxylic acid or a hydrogen-bearing
tetrazole) and an ionizable base group (primary, secondary, tertiary amine or a pyridine). These compounds may or may not be zwitterions
according to their pKa values.

1. solute molecule in the head group region

2. solute molecule in between the head group region and
the aliphatic chains

3. solute molecule in the tail region of the aliphatic chains
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set at 311 K, and was held constant in the MDS by coupling
the system to an external fixed temperature bath.22 The
trajectory step size was 0.001 ps over a total simulation time
of 20 ps for each test compound. The system was sampled

every 100 steps to yield a sampling set of 2,000 states. Two-
dimensional periodic boundary conditions corresponding to
x andy sides of model membrane, but not the “surface plane”
of the monolayer, were employed (a ) 50 Å,2 b ) 50 Å ,2

c ) 80 Å2 and γ ) 90°) for the DMPC molecules of the
monolayer model, but not the test solute molecule. The angle
γ is the angle an extended conformation DMPC molecule
makes with the “planar surface” of the monolayer.

Only a single solute molecule was explicitly considered
in each MDS. Each of the solute molecules, at the start of
an MDS, was placed at each of the three different positions
in the monolayer, as described above, with the most polar
portion of the solute “facing” toward the head group region.

3. Calculation of Descriptors and the Construction of
MI-QSAR Models. The descriptors used in the MI-QSAR
analysis can be divided into (a)general intramolecular solute
descriptors, (b)solute-membrane intermoleculardescriptors,
and (c)solute aqueous dissolution and solVationdescriptors.

(22) Berendsen, H. J. C.; Postman, J. P. M.; Gunsteren, W. F. v.; Nola,
A. D.; Haak, J. R. Molecular dynamics with coupling to an
external bath.J. Chem. Phys.1984, 81, 3684-3690.

Figure 1. The chemical structure of a DMPC phospholipid molecule with an arbitrary atom numbering assignment. c1 and c2
denote the two aliphatic chains of a DMPC molecule.

Figure 2. Top view of the monolayer assembly.

articles Iyer et al.

222 MOLECULAR PHARMACEUTICS VOL. 4, NO. 2



Thegeneral intramolecular solute descriptorsincluded as
part of the trial descriptor pool are listed and defined in Table
2. It is to be noted that the ClogP (Table 1) was calculated
using Daylight software,23 and the PSA values (Table 1) of
both the training and test set molecules were taken from the
study reported by Zhao et al.24

The intermolecular solute-membrane interaction descrip-
tors are extracted directly from the MDS trajectories and
are listed in part A of Table 3. These particular intermolecular
descriptors are calculated using the most stable (lowest total
potential energy) solute-membrane geometry realized from
MDS sampling of the three initial positions (see Figure 3a)
for each of the solutes.

It should be noted thatF(H2O), F(oct), and LogP, the
aqueous and 1-octanol solvation free energies of the solutes

and the corresponding 1-octanol/water partition coefficient,
respectively, are computed using intramolecular computa-
tional methods. This is also true forE(coh),TM, andTG, the
cohesive energy and the hypothetical crystal-melt and glass
transition temperatures of the solutes, respectively, which
are used to estimate solute dissolution properties. However,
all six of these descriptors are intermolecular properties, the
first three relating to solute solvation, and the last three to
solute dissolution. Therefore, these descriptors are classified
assolVation and dissolution intermolecular descriptorsand
listed in part B of Table 3.

4. Construction and Testing of Intestinal Absorption
MI-QSAR Models. All MI-QSAR models reported in this
study are built using multidimensional linear regression
fitting, and the models are optimized by employing the
genetic function approximation (GFA). GFA is a multidi-
mensional optimization method based on the genetic algo-
rithm paradigm.25 Both linear and quadratic representations
of each of the descriptor values are included in the trial
descriptor pool, and MI-QSAR models are built as a function
of number of descriptor terms in a model. Statistical
significance in the optimization of an MI-QSAR model is
judged using both the correlation coefficient of fit,R2, and
the leave-one-out (LOO) cross-validation correlation coef-
ficient, Q2. In addition, random scrambling of the dependent
variable [20 randomly generated data sets from each training
set ] is carried out, and an attempt is made to construct
corresponding statistically significant MI-QSAR models. No
statistically significant randomly scrambled MI-QSAR mod-
els were found for any of the data sets investigated in this
study. Covariance among the significant descriptors in the
optimized MI-QSAR models is evaluated by constructing

(23) . ClogP Daylight Chemical Information Software,Version 4.51;
Daylight Chemical Information Inc.: Los Altos, CA, 1998.

(24) Zhao, Y. H.; Abraham, M. H.; Le, J.; Hersey, A.; Luscombe, C.
N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-Limited steps of
human oral absorption and QSAR studies.Pharm. Res.2002, 19,
1446-1457.

(25) Rogers, D.; Hopfinger, A. J. Applications of genetic function
approximation to quantitative structure-activity relationships and
quantitative structure-property relationships.J. Chem. Inf. Comput.
Sci.1994, 34, 854-866.

Figure 3. (a) A “side” view of an ethanol molecule inserted
at three different positions in the DMPC model monolayer prior
to the start of each of the three corresponding MDS used in
the MI-QSAR modeling. (b) The lowest energy geometry of a
DMPC-ethanol complex in the MDS.

Table 2. The General Intramolecular Solute Descriptors
Used in the Trial MI-QSAR Descriptor Pool

HOMO highest occupied molecular orbital energy
LUMO lowest unoccupied molecular orbital energy
Dp dipole moment
Vm molecular volume
SA molecular surface area
Ds density
MW molecular weight
MR molecular refractivity
N(hba) number of hydrogen bond acceptors
N(hbd) number of hydrogen bond donors
N(B) number of rotatable bonds
JSSA (X) Jurs-Stanton surface area descriptors
Chi-N, Kappa-M Kier and Hall topological descriptors
Rg radius of gyration
PM principal moment of inertia
PSA polar surface area
Se conformational entropy
Q(I) partial atomic charge densities
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the linear cross-correlation matrix of the descriptors, and by
comparing relative descriptor usage in the crossover opti-
mization process of the GFA analysis.

C. The Diffusion Rate Constant.For an aqueous soluble
drug, its permeability characteristics play a major role in its
absorption across the gastrointestinal membrane. Passive
diffusion can be generally described by Fick’s law,24,26

according to which the rate of diffusion is a function of the
concentration gradient, the surface area and distance (thick-
ness of the membrane) involved, and characteristic physi-
cochemical properties of the biological barrier and the
diffusing substance. There is usually a sufficient quantity of
a soluble drug dissolved in the small intestinal fluid so that
the drug concentration on the receiving site (portal vein) is
often negligible in comparison. Consequently, the rate-
determining step for absorption is the passive diffusion
through the membrane and the percentage of absorption is
directly related to the diffusion rate.27 If the rate of diffusion
follows first-order kinetics,28,29 then the percentage of
absorption (% Abs), or fraction absorbed (FA), and the
diffusion rate constant (kdif) are related as given in the

following equations: since

In eqs 1-5, dCI/dt is the diffusion rate through the gas-
trointestinal membrane,kdif is the diffusion rate constant,CI

is the drug concentration in the intestinal fluid,CI
0 is the

initial concentration in the intestinal fluid,Cp
t is the

concentration in the portal vein at timet, and log t is a
constant when it is assumed that the transit time is the same
across the gastrointestinal tract for all drugs. The implications
of such an assumption are discussed in more detail below.

In this MI-QSAR study, both % Abs and logkdif are used
as dependent variables to construct human oral absorption
MI-QSAR models.

Results
The two best MI-QSAR models, eqs 6 and 7, for the initial

data set comprising all 188 drug molecules (Table 1) are
presented in Table 4 along with theirR2 (correlation

(26) Washington, N.; Washington, C.; Wilson, C. G.Physiological
Pharmaceutics, Barriers to drug Absorption, 2nd ed.; Taylor and
Francis, London, 2001.

(27) Martin, Y. C.; Kutter, E.; Austel, V.:Modern Drug Researchs
Paths to Better and Safer Drugs; Dekker: New York, 1989.

(28) Smith, D. A.; van de Waterbeemd, H.; Walker, D. K.Pharma-
cokinetics and Metabolism in Drug Design; Wiley-VCH: Wein-
heim, New York, 2001.

(29) Rowland, M.; Tozer, T. N.Clinical Pharmacokinetics: Concepts
and Applications; Lea & Febiger: Philadelphia, 1989.

Table 3. The Intermolecular Interaction Descriptors in the Trial Descriptor Pool

A. Solute-Membrane Intermolecular Descriptors
<F(total)> average total free energy of interaction of the solute and membrane
<E(total)> average total interaction energy of the solute and membrane
EINTER(total) interaction energy between the solute and the membrane at the total intermolecular system minimum potential energy
EXY(Z)E Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, torsion, and combinations thereof

energies at the total intermolecular system minimum potential energy.
X, Y can be the solute, S, and/or membrane, M, and if E ) free, then X ) Y ) S and the energies are for the solute

not in the membrane, but isolated by itself.
∆EXY(Z) Change in the Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, torsion, and combinations

thereof energies due to the uptake of the solute to the total intermolecular system minimum potential energy.
X, Y can be the solute, S, and/or membrane, M.

ETT(Z) Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, torsion, and combinations thereof
energies of the total [solute and membrane model] intermolecular minimum potential energy.

∆ETT(Z) change in the Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, and combinations thereof
of the total [solute and membrane model] intermolecular minimum potential energy

∆S change in entropy of the membrane due to the uptake of the solute
S absolute entropy of the solute-membrane system
∆F change in density of the model membrane due to the permeating solute
<d> average depth of the solute molecule from the membrane surface

B. Solute Aqueous Dissolution and Solvation Descriptors
F(H2O) aqueous solvation free energy
F(oct) 1-octanol solvation free energy
logP 1-octanol/water partition coefficient
E(coh) cohesive packing energy of the solute molecules
TM hypothetical crystal-melt transition temperature of the solute
TG hypothetical glass transition temperature of the solute

dCI/dt ) -kdifCI (1)

ln(CI
0 - Cp

t)/CI
0 ) -kdift (2a)

Cp
t/CI

0 ) FA (2b)

ln(1 - FA) ) -kdift (3)

% Abs) 100× (1 - e-kdift) )
100× (1 - e-10 logkdif + log t) (4)

log[ln(1/1 - FA)] ) log kdif + log t (5)
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coefficient of determination) andQ2 (cross-validated coef-
ficient of determination) values. One of the advantages of
performing GFA model optimization is the generation of
multiple significant models, as opposed to a single model
generated by other model optimization methods. Both MI-
QSAR models, eqs 6 and 7, have a number of descriptors in
common, and very similarR2 andQ2 values. It was found
as part of the GFA optimization process that models with
more than seven terms tend to be overfit as indicated by a
drop in theirQ2 values compared to corresponding six- and
seven-term models.

Other than the partition coefficient, ClogP, the descriptors
that are common to both models are∆ETT(hb), which is the
change in the total hydrogen-bonding energy upon uptake
of the solute (drug) molecule into the DMPC membrane
system, andTG, which is the hypothetical glass transition
temperature of the solute molecule, and models the dissolu-
tion of a liquid or gel-like solute. Both of these descriptors
are highly indicative of the flexibility [conformational
entropy] of a molecule, and/or a molecular complex like the
membrane-solute system. As overall hydrogen bonding is
lost upon uptake of a solute into a membrane, molecular
flexibility of the complex increases. As the structural groups
composing a polymer becomes more rigid, itsTG generally
increases and the molecular flexibility of the polymer
decreases. The positive regression coefficients for both∆ETT-
(hb) andTG in eqs 6 and 7 indicate that % Abs increases as
molecular flexibility decreases. Decreasing molecular flex-
ibility corresponds to decreasing favorable solute-membrane
binding interactions. This is realized by not allowing the
solute and those portions of the membrane in contact with
the solute to fit together.

Other significant descriptors of eqs 6 and 7 are the
following: ∆ETT(total), the change in total potential energy
of the solute-membrane system upon uptake of the solute
molecule,ESS(1-4)free and ETT(1-4), the 1-4 nonbonded
intramolecular energy of the free solute and the total
DMPC-solute complex, respectively, andETT(vdw), the total

van der Waals interaction energy of the membrane-solute
complex. All four of these descriptors reflect the molecular
flexibility of the solute and/or solute-membrane complex,
and have roles similar to those of∆ETT(hb) and TG, as
described above, in the expression of % Abs. Given the
relatively large number of descriptors found in eqs 6 and 7
that reflect molecular flexibility, it would seem that % Abs
is very sensitive to the molecular flexibility of both the solute
and solute-membrane complex. Table 5 shows the linear
cross-correlation matrix of the descriptors found in the two
models, and it is clear that the descriptors identified as
reflecting molecular flexibility are overall, and somewhat
surprisingly, not cross-correlated to one another. This lack
of cross-correlation can be attributed to these descriptors
capturing molecular flexibility with respect to different
structural features of the solute, membrane, and their joint
interactions. For example,ESS(1-4)free measures the short-
range molecular flexibility of the solute due to interacting
groups separated by one torsion angle in the solute. In
contrast,∆ETT(hb) reflects the change in molecular flexibility
of the entire solute-membrane complex resulting from the
overall change in hydrogen bonding in the complex due to
uptake of the solute into the membrane.

Dp is the intramolecular dipole moment of the solute in
its lowest energy state, andF(H2O) and PSA are the aqueous
free energy of solvation and the polar surface area of the
solute, respectively. Each of these three descriptors reflects
that as the polarity of the solute increases, that is Dp and
PSA increase, andF(H2O) becomes more negative, the
corresponding absorption of the solute [drug], % Abs,
decreases.

From an inspection of the cross-correlation matrix in Table
5, it is seen that PSA andF(H2O) have, as expected, a high
linear correlation since both are measures of polarity.F(H2O)
has been shown to be an important descriptor in MI-QSAR
models for Caco-2 permeability.15 It is likely that the PSA
descriptor captures some solvation characteristics of the
molecule and acts as a partial “replacement” forF(H2O) in

Table 4. Percentage Oral Absorption, % Abs, MI-QSAR Models for the Initial Training Set (A)

eq terms N model R2 Q2

6 7 188 % Abs ) 78.32 + 0.13 ∆ETT (hb) + 3.39 ClogP - 0.03 ∆ETT(total) + 0.31F(H2O) + 0.05ESS(1-4)free +
0.04TG - 39.24 Dp

0.68 0.65

7 6 188 % Abs ) -10.05 + 0.05ETT(1-4) - 0.13 PSA + 0.04 TG + 0.12 ∆ETT(hb) + 3.62 ClogP - 0.06ETT(vdw) 0.67 0.64

Table 5. Cross-Correlation Matrix of Percentage of Absorption of the MI-QSAR Descriptors of Eqs 6 and 7a

ClogP PSA F(H2O) TG Dp ESS(1-4)free ETT(1-4) ETT(vdw) ∆ETT(hb) ∆ETT(total)

ClogP 1.000
PSA 0.577 1.000
F(H2O) 0.542 0.863 1.000
TG 0.016 0.002 0.022 1.000
Dp 0.012 0.040 0.003 0.099 1.000
ESS(1-4)free 0.001 0.001 0.018 0.013 0.003 1.000
ETT(1-4) 0.000 0.000 0.012 0.007 0.007 0.887 1.000
ETT(vdw) 0.003 0.001 0.000 0.010 0.005 0.000 0.000 1.000
∆ETT(hb) 0.500 0.639 0.585 0.000 0.002 0.013 0.017 0.000 1.000
∆ETT(total) 0.005 0.000 0.000 0.000 0.000 0.000 0.001 0.380 0.001 1.000

a Highly correlated descriptors are shown in bold.
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eq 7. The cross-correlation matrix also reveals a high
correlation between the 1-4 nonbonded interaction energy
within the solute and the same energy term calculated for
the entire membrane-solute complex [ESS(1-4)free andETT-
(1-4)], and these descriptors could be playing similar roles
in either model.

The 7-term model, eq 6, has a constant term of 78.32 that
is very close to the mean percentage absorption (79.77) of
the entire training set. This observation is suggestive that eq
6 is a superior statistical model to eq 7, the 6-term model.
The predicted versus observed percentage oral absorption,
% Abs, plot for eq 6 is shown in Figure 4.

Most molecules in Table 1 [training set A] are drugs that
are orally administered. This feature of the data set partially
compromises the statistical quality of the data. From a total
of 188 compounds, 47 compounds have 100% absorption
and 52 compounds are in the range of 90-99% absorption.
The molecule with the lowest absorption value is raffinose
(0.3%). However, the mean and median absorption values
are 80% and 90%, respectively, and the data has a standard
deviation of 27%. The distribution of the data in training
set A is shown in Figure 5. Given the large size and highly

skewed absorption measures across the range of this data
set, eq 6 can be judged to be a reasonably significant model
even with anR2 ) 0.68. Moreover, the absence of any
statistical significant models upon random scrambling of the
data set also suggests that the model is stable and robust as
well.

But, to further investigate the applicability of MI-QSAR
descriptors to predict intestinal absorption data, models are
also constructed using the kinetic constant (kdif) as the
dependent variable. logkdif is calculated using eq 5, but this
equation is not defined if FA is 0 or 1, that is, when the
absorption percent is either 0% or 100%. Therefore, to derive
a logkdif model for training set A, drugs having percentage
absorption values of 100% are modified to 99.5% absorption.
There are no compounds in the data set with 0% absorption
so no corrections on this opposite side of the % Abs range
are necessary. The logkdif MI-QSAR model for training set
A, with the altered data, is given in Table 6 as eq 8. This
model shows slight improvement in quality from the percent-
age absorption model for the same training set having anR2

of 0.73 (from 0.68 in eq 6) and aQ2 of 0.67 (from 0.65 in
eq 6).

Figure 4. The predicted versus observed percent oral absorption, % Abs, plot for the 188 drugs (training set A) using the
MI-QSAR model given by eq 6.

Figure 5. Distribution of % Abs measures across the range of the training set A.
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Next, in order to probe the effect of the skewed absorption
data on the construction of the MI-QSAR models, the 47
drugs with 100% absorption are eliminated from the original
data set, that is, training set A. A new data set, divided into
a modified training set (B) consisting of 117 compounds and
a test set consisting of 24 compounds, is constructed. The
test set is selected to span the entire range of the training
set, and with the same skewed distribution with respect to
oral absorption measures as the training set. In addition, the
distribution of relative molecular similarity across the test
set is made to be approximately the same as that of the
training set. Moreover, in order to determine the effect of
the zwitterionic compounds on the QSAR models, the
zwitterions are eliminated from the modified training set B
to create another training set (C) with 106 drugs. The test
set mentioned above has three zwitterionic drugs that are
also eliminated to form a distinct test set for training set C.
The logkdif MI-QSAR models for training sets B and C are
listed in Table 6 along with their respectiveR2 andQ2 values.

The significant descriptors appearing in the resultant MI-
QSAR models (eqs 8-10, Table 6) are ClogP, the free space
intramolecular solute hydrogen-bonding energy [ESS(hb)free],
the change in intramolecular bending energies of the solute
and the total membrane-solute complex upon uptake of the

solute, [∆ESS(bend) and∆ETT(bend), respectively], the total
bending energy of the membrane-solute complex [ETT-
(bend)], the sum of intermolecular van der Waals and
electrostatic energies between the phospholipid and the
“bound” solute molecule [EMS(vdw+chg)], the highest oc-
cupied molecular orbital energy [HOMO], and the hypotheti-
cal glass transition temperature of the solute [TG].

∆ESS(bend),∆ETT(bend), and [ETT(bend)] are descriptors
again reflective of molecular flexibility and play the same
role in eqs 8-10 as∆ETT(total) and similar descriptors do
in eqs 6 and 7.EMS(vdw+chg) is a direct estimate of the
sum of the electrostatic and hydrogen bonding taking place
between the membrane and the solute. logkdif is predicted
to modestly increase with increasing membrane-solute
electrostatic and hydrogen bonding [more negative values
of EMS(vdw+chg)]. This relationship would suggest that
solute partitioning into the membrane from solution, and
subsequent diffusion, is facilitated by electrostatic and
hydrogen bonding between the membrane and the solute.

Table 7 (parts A, B, and C) shows the cross-correlation
matrix of the descriptors of eqs 8-10. No significant
correlation is present among the descriptors, indicating that
each descriptor provides unique information to account for
the behavior of the training set data.

Table 6. log kdif MI-QSAR Models for Training Sets A, B, and Ca

eq N model R2 Q2

8 188 log kdif ) 1.68 + 0.08 ClogP - 0.0002 HOMO + 0.006ESS(hb)free + 0.0003TG - 0.002EMS(vdw+chg) -
0.001ETT(bend)

0.73 0.67

9 117 log kdif ) -0.12 + 0.006ESS(hb)free + 0.09 ClogP - 0.02 ∆ESS(bend) - 0.002EMS(vdw+chg) 0.78 0.74
10 106 log kdif ) -0.44 + 0.10 ClogP - 0.002 ∆ETT(bend) + 0.0005TG + 0.005ESS (hb)free - 0.001EMS(vdw+chg) 0.82 0.79

a Drugs with 100% and 0% absorption are eliminated in training set B, and zwitterionic drugs are also eliminated in forming training set C.
The test set compounds are also eliminated for training sets B and C.

Table 7. Cross-Correlation Matrices of the Descriptors of the MI-QSAR log kdif Model for Training Sets A, B,and C

A. For Training Set A

ClogP ESS(hb)free EMS(vdw+chg) HOMO ETT(bend) TG

ClogP 1.000
ESS(hb)free 0.493 1.000
EMS(vdw+chg) 0.295 0.362 1.000
HOMO 0.009 0.002 0.010 1.000
ETT(bend) 0.006 0.013 0.002 0.000 1.000
TG 0.005 0.014 0.000 0.008 0.005 1.000

B. For Training Set B

EMS(vdw+chg) ESS(hb)free ∆ESS(bend) ClogP

EMS(vdw+chg) 1.000
ESS(hb)free 0.353 1.000
∆ESS(bend) 0.000 0.004 1.000
ClogP 0.246 0.589 0.011 1.000

C. For Training Set C

ClogP ∆ETT(bend) ESS(hb)free EMS(vdw+chg) TG

ClogP 1.000
∆ETT(bend) 0.004 1.000
ESS(hb)free 0.610 0.006 1.000
EMS(vdw+chg) 0.247 0.000 0.354 1.000
TG 0.147 0.009 0.058 0.020 1.000
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The MI-QSAR model for training set B (eq 9) exhibits a
better statistical significance than do the models for the
original training set A (eqs 6 and 7). logkdif values for
training set B, as predicted by the model expressed as eq 9,
are plotted in Figure 6. Additional validation of the model
(eq 9) is performed using the test set described above, and
given in Table 8, which spans the entire logkdif range of
training set B. Equation 9 performs marginally in predicting
the logkdif values of the test set. The correlation (R2) between

predicted and observed logkdif values for the test set is 0.5
(plotted in Figure 7 and tabulated in Table 8). As a diagnostic
check to evaluate model predicitivty, eliminating the two
largest outliers, compounds 20 and 21 of Table 8, from the
test set improves the predictiveR2 value to only 0.6. This
suggests that the limitations in the accurate predictivity of
eq 9 are distributed reasonably evenly across the test set.

Eliminating the zwitterions from training set B signifi-
cantly improves the statistical quality of the resultant log
kdif MI-QSAR model. When the zwitterions are eliminated
to form training set C, the cross-validated correlation
coefficient (0.79) of the corresponding MI-QSAR model (eq
10) is higher than that of eq 9 (0.74). Thus, it appears that
a substantial source for the lack of fit of eq 8 is the inclusion
of the zwitterions in training set B. However, more significant
is the finding of the solid performance of the logkdif MI-
QSAR model, given by eq 10, in predicting the logkdif of
the test set molecules. This model predicts the test set,
composed of 21 compounds, with good accuracy (R2 ) 0.70),
which is not too much less than the fit of the MI-QSAR
model to the compounds of training set C. Removing two
outliers from the test set further improves the predictedR2

to 0.74. The predicted versus observed logkdif plots of the
training and test sets for eq 10 are shown in Figures 8 and
9, respectively.

Figure 6. log kdif values for training set B (N ) 117) observed
and as predicted by the MI-QSAR model (eq 9).

Table 8. Observed and Predicted log kdif Values, and
Corresponding Residuals of Fit, for the Compounds of the
Test Sets

log kdif

predicted residual

molecule
%

Abs obsd eq 9 eq 10 eq 9 eq 10

1 naproxen 99 0.301 0.111 0.403 -0.190 0.102
2 minoxidilne 98 0.230 -0.326 -0.056 -0.556 -0.287
3 disulfiram 97 0.183 0.201 0.112 0.018 -0.071
4 codeine 95 0.114 -0.035 -0.197 -0.149 -0.311
5 oxprenolol 95 0.114 -0.075 -0.097 -0.189 -0.212
6 amrinone 93 0.063 -0.350 -0.233 -0.412 -0.296
7 amphetamine 90 0.000 -0.031 0.008 -0.031 0.008
8 nisoldipine 90 0.000 0.317 0.329 0.317 0.329
9 dihydrocodeine 89 -0.018 -0.117 -0.171 -0.098 -0.152
10 nitrendipine 88 -0.036 0.076 0.141 0.111 0.177
11 lansoprazole 85 -0.084 0.107 0.130 0.191 0.214
12 captopril 84 -0.099 -0.107 -0.142 -0.008 -0.043
13 flecainide 81 -0.142 -0.075 0.100 0.067 0.242
14 ethambutol 80 -0.156 -0.336 -0.410 -0.181 -0.254
15 famciclovir 77 -0.195 -0.326 -0.303 -0.131 -0.108
16 cimetidine 64 -0.353 -0.279 -0.032 0.074 0.321
17 reproterol 60 -0.400 -0.450 -0.389 -0.050 0.011
18 atenolol 50 -0.521 -0.427 -0.400 0.095 0.121
19 famotidine 38 -0.683 -1.231 -0.668 -0.549 0.014
20 adefovir 16 -1.121 -0.242 -0.392 0.878 0.729
21 ouabain 1.4 -2.213 -1.332 -1.230 0.881 0.983
22 amoxicillin 93 0.063 -0.683 zwitterion -0.746
23 levodopa 86 -0.069 -0.685 zwitterion -0.616
24 methyldopa 41 -0.640 -0.662 zwitterion -0.022

Figure 7. log kdif values for the test set (N ) 24) observed
and as predicted by the MI-QSAR model (eq9).

Figure 8. log kdif values for training set C (N ) 106) observed
and as predicted by the MI-QSAR model (eq 10).
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Discussion
In evaluating the QSAR analyses carried out in the work

reported here it is important to keep in mind at the outset
that gastrointestinal drug absorption is a highly complex
process. Thus, it is expected to be quite difficult, if not
impossible, to account for all the involved factors in a single
QSAR model. However, some important aims and corre-
sponding inferences regarding the nature of drug absorption
could be reliably considered as part of this study.

One aim of this study is to ascertain if the MI-QSAR
methodology would be applicable to a large, structurally
diverse, data set. Most ADME training sets involve many
more molecules of higher structural diversity than is found
in a typical QSAR training set like enzyme inhibition by a
set of analog inhibitors. The ADME data set used in this
study is additionally challenging since most of the molecules
are drugs that have good oral absorption. Hence, the percent
absorbed measures are skewed toward highly absorbed
molecules, and nonuniformly influence the data-fitting
process of QSAR model building. Overall, the resultant
models, as given by eqs 6- 10, indicate the following:

(1) Only marginal models can be built for the entire data
set [eqs 6 and 7] with respect to accuracy, but these models
are stable and significant as judged by theR2 andQ2 of each
model being nearly identical to one another. Thus, the
descriptors of these models may meaningfully reflect the
mechanism of drug absorption.

(2) Accurate QSAR models could only be built after some
data pruning. Elimination of the many (47) compounds
reported to have 100% absorption, as well as zwitterionic
compounds, led to an accurate and predictive model as
expressed by eq 10. One can argue that the many compounds
with 100% absorption in the training set unduly bias the
fitting of the data and lead to distorted models, while the
zwitterionic compounds may act by a modified/different
mechanism of transport making the development of a single
QSAR model for a single mechanism of transport difficult,
or even meaningless to pursue.

(3) Intermolecular MI-QSAR descriptors are found to play
a vital role in describing human intestinal oral absorption.
A composite examination of the final set of best MI-QSAR

models leads to the conclusion that “classic” intramolecular
QSAR descriptors are not adequate to describe intestinal
absorption. It is emphasized that the identical intramolecular
QSAR descriptors found to be significant in other reported
absorption and distribution ADME QSAR models were
included in the set of trial descriptors of this study. However,
several of these intramolecular descriptors were not as
important relative to intermolecular MI-QSAR descriptors
in building the best models. For example, polar surface area,
PSA, is found in many “intramolecular” ADME QSAR
models reported in the literature, but only appears once, that
being in eq 7, in this work.

(4) Equations 6-10 can be generalized to a form involving
three types of thermodynamic processes:

Table 9 reports how the descriptors of eqs 6-10 are
distributed with respect to these three types of thermody-
namic processes. An inspection and comparison of eqs 6-
10 suggests that % Abs is dependent upon both aqueous-
membrane partitioning and aqueous solubility of the drug
[eqs 6 and 7], while the associated diffusion process of
absorption, as represented by logkdif, is largely governed
by aqueous-membrane partitioning as ClogP is only found
in eqs 8-10. In making these assessments it is remembered
that ClogP is not an explicit measure of aqueous and/or
membrane solubilities, but rather an approximate measure
of their ratio.

Diffusion is seemingly only influenced by direct mem-
brane-solute “binding”, while overall drug absorption, %
Abs, involves not only direct membrane-solute interactions
but also interactions influencing structural reorganization of
the membrane. Finally, there are no apparent differences in
the types, or sources, of conformational flexibility of the drug
and/or membrane with respect to % Abs and logkdif. The
same types of descriptors reflecting molecular flexibility are
found in eqs 6 and 7 as in eqs 8-10 as can be seen in Table
9.

Most papers reporting QSAR models for transport ADME
properties do not explicitly discuss these models in terms of
thermodynamic processes. However, discussions around
some of these literature models suggest that constraints on
molecular lipophilicity and polar surface area are necessary
for effective barrier transport.

A second aim of this study is to determine, as far as
possible from the MI-QSAR models, how similar the Caco-2
cell permeation process30 is to human intestinal oral drug
absorption. Caco-2 cell permeation has long been used as a

(30) Pinto, M.; Robine-Leon, S.; Appay, M.; Kedinger, M.; Triadou,
N.; et al. Caco-2 cell monolayer a surrogate marker for in vivo
intestinal permeability in humans.Biol. Cell 1983, 47, 323-328.

Figure 9. log kdif values for the test set (N ) 21) observed
and as predicted by MI-QSAR model (eq10).

[% Abs] or [logkdif] ) (a constant value)+
(solubility and partitioning)

+ (membrane-solute binding)

+ (conformational flexibility of the
solute and/or membrane) (11)
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laboratory model for oral drug absorption.31 We previously
developed an MI-QSAR Caco-2 cell permeation model15

which is given by

The descriptor terms in eq 12 have been included in Table
9 to facilitate comparisons to both the % Abs and logkdif

MI-QSAR models. The descriptor terms of eq 12 are, overall,
largely indistinguishable from those of eqs 6-10. However,
eq 6 has the largest number of common descriptors to those
of eq 12. Hence, based solely on the descriptors of the MI-
QSAR models, and indirectly on the mechanism of transport
the descriptors likely reflect, it is reasonable to conclude that
intestinal absorption and Caco-2 cell permeation involve
similar transport processes. The absence of a ClogP term in
eq 12, however, does suggest that water-membrane parti-
tioning may be less important in Caco-2 cell permeation than
in human intestinal oral absorption.

The regression coefficients of eqs 6-12 have not been
normalized with respect to their weightings within a given
MI-QSAR model. Still, the relative values of the regression
coefficients of eq 12 can be qualitatively compared to those
of eqs 6 and 7. The two training sets are quite similar with
respect to both chemical structures of the molecules of the
training sets and the corresponding range/magnitude of the
dependent variables [% Abs andPCaco-2]. Such a qualitative
comparison suggests that increasing aqueous solubility [an
increasingly negativeF(H2O) value] of a drug more signifi-
cantly decreases Caco-2 cell permeation [regression coef-
ficient ) 0.71] than intestinal absorption [regression coef-
ficient ) 0.31, eq 6]. Minimizing the disruption in the overall
hydrogen bonding of both the membrane and drug upon the
uptake of the drug into the membrane, as measured by
∆ETT(hb), maximizes both Caco-2 cell permeation and
intestinal absorption. However, this factor is again more
significant in Caco-2 cell permeation than for intestinal
permeation.

A third aim of this study is to compare the descriptor terms
of a blood-brain-barrier (BBB) penetration MI-QSAR model
to the intestinal absorption MI-QSAR models, eqs 6-10, as
well as to the Caco-2 cell permeation model, eq 12.
Previously, we developed an MI-QSAR model for BBB
penetration16 that is given by

The descriptors of eq 13 are also listed in Table 9 to readily
permit comparisons among the descriptors of the various MI-
QSAR models. The descriptors of eq 13 match up reasonably
well to those of eqs 6-10, as well as those of eq 12 for
Caco-2 cell permeation. Moreover, eq 13 includes a ClogP
term which could be argued makes it more similar overall
to eqs 6-10 than to eq 12. But while available experimental
data indicates that BBB penetration exhibits a trend with oral
drug absorption, and also with Caco-2 cell permeation, it is
less indicative of human intestinal oral absorption than is
Caco-2 cell permeation. Thus, solute differences between
BBB penetration and oral absorption are expected to be
reflected in the specific descriptors not in common between
the BBB and oral absorption models, and/or differences in
the relative importance, as measured by the regression
coefficients, of the common descriptors in the MI-QSAR
models for these two transport processes.

Again, like eq 12, the relative values of the regression
coefficients of eq 13 can be qualitatively compared to those
of eqs 6-10 for identical descriptors since the training sets
are quite similar. However, such comparisons are most
reasonable for eqs 8-10, where the common range in the
dependent variables is about the same as that for eq 13 [log
BBB, log kdif]. Moreover, a comparison between eq 10 and
eq 13 is particularly appropriate because theR2 values of
these two MI-QSAR models are also about the same.

One immediate observation in comparing BBB penetration
and human intestinal oral absorption models is that the
regression coefficient of the ClogP term for the BBB MI-
QSAR model is about twice as large as the regression
coefficients in eqs 8-10. Thus, BBB penetration is predicted
to be more sensitive to increasing drug lipophilicity than

(31) Artursson, P. Cell cultures as models for drug absorption across
the intestinal mucosa.Control ReV. Ther. Drug Syst.1991, 8, 305-
330.

Table 9. The Distribution of the MI-QSAR Descriptors of Eqs 6-10, 12, and 13 with Respect to Aqueous Solubility,
Membrane-Solute Interaction/Binding, and Solute Conformational Flexibility in the Membrane

eq
solubility and
partitioning

membrane-solute
interactions

solute and membrane
conformational flexibility

6 ClogP; F(H2O) ∆ETT(hb); ∆ETT(total); Dp ESS(1-4)free; TG

7 ClogP; PSA ∆ETT(hb); ∆ETT(vdw) ETT(1-4)free; TG

8 ClogP HOMO; EMS(vdw+chg) ETT(bend); TG; ESS(hb)free

9 ClogP EMS(vdw+chg) ∆ESS(bend); ESS(hb)free

10 ClogP EMS(vdw+chg) ∆ETT(bend); ESS(hb)free; TG

12 Caco-2 cell permeation,
ref 15

F(H2O) ∆ETT (hb) ETT(1-4)free; ESS(hb)free

13 BBB penetration,
ref 16

ClogP; PSA EMS(chg+hb) ETT(1-4)free; ESS(tor)free

PCaco-2 ) -14.62+ 0.71F(H2O) + 0.07∆ETT(hb) -
0.26ESS(hb) + 0.06ETT(1-4) (12)

N ) 30 R2 ) 0.82 Q2 ) 0.75 log BBB ) 0.0156- 0.0231 PSA+ 0.1591 ClogP-
0.0071EMS(chg+ hbd)+ 0.0346ESS(tor) +

0.0075∆ETT(1-4) (13)

N ) 56 R2 ) 0.845 Q2 ) 0.795
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intestinal oral absorption. Moreover, the BBB penetration
and intestinal oral absorption models all contain an identical
drug-membrane binding descriptor,EMS(chg + hbd). The
EMS(chg+ hbd) term for BBB penetration has a regression
coefficient at least three times larger in magnitude than those
of eqs 8-10. As a result, BBB penetration is predicted to
be influenced more significantly by binding to the membrane
than is intestinal oral absorption.

The remaining descriptors of eq 13 are different from those
of eqs 8-10 and, with the exception of PSA, are simply
different representations of drug and/or membrane molecular
flexibility. Thus, we would conclude that the BBB barrier
is very sensitive to the molecular flexibility of both itself
and the drug passing through it, in a considerably different
way from that of the oral absorption barrier.

Equations 1-5 that define the first-order process of passive
diffusion also provide a useful method to estimate diffusion
constants. However, it must be pointed out that these
equations do not take into consideration the physiology of
the gastrointestinal tract. In reality, a drug experiences
different pH environments in the stomach and intestine, and
the transit time is also variable.29 The underlying assumption

in deriving these models is that the intestinal transit time is
constant for all molecules of the data set. Thus, while a
diffusion rate constant is estimated for the purpose of this
study, it may not be reliable and/or accurate to define the
process of absorption based upon such a correspondingly
simple kinetic rate equation.
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